Cargando…

A Mass Conservative Kalman Filter Algorithm for Computational Thermo-Fluid Dynamics

This paper studies Kalman filtering applied to Reynolds-Averaged Navier–Stokes (RANS) equations for turbulent flow. The integration of the Kalman estimator is extended to an implicit segregated method and to the thermodynamic analysis of turbulent flow, adding a sub-stepping procedure that ensures m...

Descripción completa

Detalles Bibliográficos
Autores principales: Introini, Carolina, Lorenzi, Stefano, Cammi, Antonio, Baroli, Davide, Peters, Bernhard, Bordas, Stéphane
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6267179/
https://www.ncbi.nlm.nih.gov/pubmed/30413109
http://dx.doi.org/10.3390/ma11112222
_version_ 1783376007930052608
author Introini, Carolina
Lorenzi, Stefano
Cammi, Antonio
Baroli, Davide
Peters, Bernhard
Bordas, Stéphane
author_facet Introini, Carolina
Lorenzi, Stefano
Cammi, Antonio
Baroli, Davide
Peters, Bernhard
Bordas, Stéphane
author_sort Introini, Carolina
collection PubMed
description This paper studies Kalman filtering applied to Reynolds-Averaged Navier–Stokes (RANS) equations for turbulent flow. The integration of the Kalman estimator is extended to an implicit segregated method and to the thermodynamic analysis of turbulent flow, adding a sub-stepping procedure that ensures mass conservation at each time step and the compatibility among the unknowns involved. The accuracy of the algorithm is verified with respect to the heated lid-driven cavity benchmark, incorporating also temperature observations, comparing the augmented prediction of the Kalman filter with the Computational Fluid-Dynamic solution found on a fine grid.
format Online
Article
Text
id pubmed-6267179
institution National Center for Biotechnology Information
language English
publishDate 2018
publisher MDPI
record_format MEDLINE/PubMed
spelling pubmed-62671792018-12-17 A Mass Conservative Kalman Filter Algorithm for Computational Thermo-Fluid Dynamics Introini, Carolina Lorenzi, Stefano Cammi, Antonio Baroli, Davide Peters, Bernhard Bordas, Stéphane Materials (Basel) Article This paper studies Kalman filtering applied to Reynolds-Averaged Navier–Stokes (RANS) equations for turbulent flow. The integration of the Kalman estimator is extended to an implicit segregated method and to the thermodynamic analysis of turbulent flow, adding a sub-stepping procedure that ensures mass conservation at each time step and the compatibility among the unknowns involved. The accuracy of the algorithm is verified with respect to the heated lid-driven cavity benchmark, incorporating also temperature observations, comparing the augmented prediction of the Kalman filter with the Computational Fluid-Dynamic solution found on a fine grid. MDPI 2018-11-08 /pmc/articles/PMC6267179/ /pubmed/30413109 http://dx.doi.org/10.3390/ma11112222 Text en © 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
spellingShingle Article
Introini, Carolina
Lorenzi, Stefano
Cammi, Antonio
Baroli, Davide
Peters, Bernhard
Bordas, Stéphane
A Mass Conservative Kalman Filter Algorithm for Computational Thermo-Fluid Dynamics
title A Mass Conservative Kalman Filter Algorithm for Computational Thermo-Fluid Dynamics
title_full A Mass Conservative Kalman Filter Algorithm for Computational Thermo-Fluid Dynamics
title_fullStr A Mass Conservative Kalman Filter Algorithm for Computational Thermo-Fluid Dynamics
title_full_unstemmed A Mass Conservative Kalman Filter Algorithm for Computational Thermo-Fluid Dynamics
title_short A Mass Conservative Kalman Filter Algorithm for Computational Thermo-Fluid Dynamics
title_sort mass conservative kalman filter algorithm for computational thermo-fluid dynamics
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6267179/
https://www.ncbi.nlm.nih.gov/pubmed/30413109
http://dx.doi.org/10.3390/ma11112222
work_keys_str_mv AT introinicarolina amassconservativekalmanfilteralgorithmforcomputationalthermofluiddynamics
AT lorenzistefano amassconservativekalmanfilteralgorithmforcomputationalthermofluiddynamics
AT cammiantonio amassconservativekalmanfilteralgorithmforcomputationalthermofluiddynamics
AT barolidavide amassconservativekalmanfilteralgorithmforcomputationalthermofluiddynamics
AT petersbernhard amassconservativekalmanfilteralgorithmforcomputationalthermofluiddynamics
AT bordasstephane amassconservativekalmanfilteralgorithmforcomputationalthermofluiddynamics
AT introinicarolina massconservativekalmanfilteralgorithmforcomputationalthermofluiddynamics
AT lorenzistefano massconservativekalmanfilteralgorithmforcomputationalthermofluiddynamics
AT cammiantonio massconservativekalmanfilteralgorithmforcomputationalthermofluiddynamics
AT barolidavide massconservativekalmanfilteralgorithmforcomputationalthermofluiddynamics
AT petersbernhard massconservativekalmanfilteralgorithmforcomputationalthermofluiddynamics
AT bordasstephane massconservativekalmanfilteralgorithmforcomputationalthermofluiddynamics