Cargando…
A Mass Conservative Kalman Filter Algorithm for Computational Thermo-Fluid Dynamics
This paper studies Kalman filtering applied to Reynolds-Averaged Navier–Stokes (RANS) equations for turbulent flow. The integration of the Kalman estimator is extended to an implicit segregated method and to the thermodynamic analysis of turbulent flow, adding a sub-stepping procedure that ensures m...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6267179/ https://www.ncbi.nlm.nih.gov/pubmed/30413109 http://dx.doi.org/10.3390/ma11112222 |
_version_ | 1783376007930052608 |
---|---|
author | Introini, Carolina Lorenzi, Stefano Cammi, Antonio Baroli, Davide Peters, Bernhard Bordas, Stéphane |
author_facet | Introini, Carolina Lorenzi, Stefano Cammi, Antonio Baroli, Davide Peters, Bernhard Bordas, Stéphane |
author_sort | Introini, Carolina |
collection | PubMed |
description | This paper studies Kalman filtering applied to Reynolds-Averaged Navier–Stokes (RANS) equations for turbulent flow. The integration of the Kalman estimator is extended to an implicit segregated method and to the thermodynamic analysis of turbulent flow, adding a sub-stepping procedure that ensures mass conservation at each time step and the compatibility among the unknowns involved. The accuracy of the algorithm is verified with respect to the heated lid-driven cavity benchmark, incorporating also temperature observations, comparing the augmented prediction of the Kalman filter with the Computational Fluid-Dynamic solution found on a fine grid. |
format | Online Article Text |
id | pubmed-6267179 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2018 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-62671792018-12-17 A Mass Conservative Kalman Filter Algorithm for Computational Thermo-Fluid Dynamics Introini, Carolina Lorenzi, Stefano Cammi, Antonio Baroli, Davide Peters, Bernhard Bordas, Stéphane Materials (Basel) Article This paper studies Kalman filtering applied to Reynolds-Averaged Navier–Stokes (RANS) equations for turbulent flow. The integration of the Kalman estimator is extended to an implicit segregated method and to the thermodynamic analysis of turbulent flow, adding a sub-stepping procedure that ensures mass conservation at each time step and the compatibility among the unknowns involved. The accuracy of the algorithm is verified with respect to the heated lid-driven cavity benchmark, incorporating also temperature observations, comparing the augmented prediction of the Kalman filter with the Computational Fluid-Dynamic solution found on a fine grid. MDPI 2018-11-08 /pmc/articles/PMC6267179/ /pubmed/30413109 http://dx.doi.org/10.3390/ma11112222 Text en © 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Introini, Carolina Lorenzi, Stefano Cammi, Antonio Baroli, Davide Peters, Bernhard Bordas, Stéphane A Mass Conservative Kalman Filter Algorithm for Computational Thermo-Fluid Dynamics |
title | A Mass Conservative Kalman Filter Algorithm for Computational Thermo-Fluid Dynamics |
title_full | A Mass Conservative Kalman Filter Algorithm for Computational Thermo-Fluid Dynamics |
title_fullStr | A Mass Conservative Kalman Filter Algorithm for Computational Thermo-Fluid Dynamics |
title_full_unstemmed | A Mass Conservative Kalman Filter Algorithm for Computational Thermo-Fluid Dynamics |
title_short | A Mass Conservative Kalman Filter Algorithm for Computational Thermo-Fluid Dynamics |
title_sort | mass conservative kalman filter algorithm for computational thermo-fluid dynamics |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6267179/ https://www.ncbi.nlm.nih.gov/pubmed/30413109 http://dx.doi.org/10.3390/ma11112222 |
work_keys_str_mv | AT introinicarolina amassconservativekalmanfilteralgorithmforcomputationalthermofluiddynamics AT lorenzistefano amassconservativekalmanfilteralgorithmforcomputationalthermofluiddynamics AT cammiantonio amassconservativekalmanfilteralgorithmforcomputationalthermofluiddynamics AT barolidavide amassconservativekalmanfilteralgorithmforcomputationalthermofluiddynamics AT petersbernhard amassconservativekalmanfilteralgorithmforcomputationalthermofluiddynamics AT bordasstephane amassconservativekalmanfilteralgorithmforcomputationalthermofluiddynamics AT introinicarolina massconservativekalmanfilteralgorithmforcomputationalthermofluiddynamics AT lorenzistefano massconservativekalmanfilteralgorithmforcomputationalthermofluiddynamics AT cammiantonio massconservativekalmanfilteralgorithmforcomputationalthermofluiddynamics AT barolidavide massconservativekalmanfilteralgorithmforcomputationalthermofluiddynamics AT petersbernhard massconservativekalmanfilteralgorithmforcomputationalthermofluiddynamics AT bordasstephane massconservativekalmanfilteralgorithmforcomputationalthermofluiddynamics |