Cargando…

Establishing the cognitive signature of human brain networks derived from structural and functional connectivity

Numerous neuroimaging studies have identified various brain networks using task-free analyses. While these networks undoubtedly support higher cognition, their precise functional characteristics are rarely probed directly. The frontal, temporal, and parietal lobes contain the majority of the tertiar...

Descripción completa

Detalles Bibliográficos
Autores principales: Jung, JeYoung, Visser, Maya, Binney, Richard J., Lambon Ralph, Matthew A.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Springer Berlin Heidelberg 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6267264/
https://www.ncbi.nlm.nih.gov/pubmed/30120553
http://dx.doi.org/10.1007/s00429-018-1734-x
_version_ 1783376027653767168
author Jung, JeYoung
Visser, Maya
Binney, Richard J.
Lambon Ralph, Matthew A.
author_facet Jung, JeYoung
Visser, Maya
Binney, Richard J.
Lambon Ralph, Matthew A.
author_sort Jung, JeYoung
collection PubMed
description Numerous neuroimaging studies have identified various brain networks using task-free analyses. While these networks undoubtedly support higher cognition, their precise functional characteristics are rarely probed directly. The frontal, temporal, and parietal lobes contain the majority of the tertiary association cortex, which are key substrates for higher cognition including executive function, language, memory, and attention. Accordingly, we established the cognitive signature of a set of contrastive brain networks on the main tertiary association cortices, identified in two task-independent datasets. Using graph-theory analysis, we revealed multiple networks across the frontal, temporal, and parietal cortex, derived from structural and functional connectivity. The patterns of network activity were then investigated using three task-active fMRI datasets to generate the functional profiles of the identified networks. We employed representational dissimilarity analysis on these functional data to quantify and compare the representational characteristics of the networks. Our results demonstrated that the topology of the task-independent networks was strongly associated with the patterns of network activity in the task-active fMRI. Our findings establish a direct relationship between the brain networks identified from task-free datasets and higher cognitive functions including cognitive control, language, memory, visuospatial function, and perception. Not only does this study support the widely held view that higher cognitive functions are supported by widespread, distributed cortical networks, but also it elucidates a methodological approach for formally establishing their relationship. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (10.1007/s00429-018-1734-x) contains supplementary material, which is available to authorized users.
format Online
Article
Text
id pubmed-6267264
institution National Center for Biotechnology Information
language English
publishDate 2018
publisher Springer Berlin Heidelberg
record_format MEDLINE/PubMed
spelling pubmed-62672642018-12-11 Establishing the cognitive signature of human brain networks derived from structural and functional connectivity Jung, JeYoung Visser, Maya Binney, Richard J. Lambon Ralph, Matthew A. Brain Struct Funct Original Article Numerous neuroimaging studies have identified various brain networks using task-free analyses. While these networks undoubtedly support higher cognition, their precise functional characteristics are rarely probed directly. The frontal, temporal, and parietal lobes contain the majority of the tertiary association cortex, which are key substrates for higher cognition including executive function, language, memory, and attention. Accordingly, we established the cognitive signature of a set of contrastive brain networks on the main tertiary association cortices, identified in two task-independent datasets. Using graph-theory analysis, we revealed multiple networks across the frontal, temporal, and parietal cortex, derived from structural and functional connectivity. The patterns of network activity were then investigated using three task-active fMRI datasets to generate the functional profiles of the identified networks. We employed representational dissimilarity analysis on these functional data to quantify and compare the representational characteristics of the networks. Our results demonstrated that the topology of the task-independent networks was strongly associated with the patterns of network activity in the task-active fMRI. Our findings establish a direct relationship between the brain networks identified from task-free datasets and higher cognitive functions including cognitive control, language, memory, visuospatial function, and perception. Not only does this study support the widely held view that higher cognitive functions are supported by widespread, distributed cortical networks, but also it elucidates a methodological approach for formally establishing their relationship. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (10.1007/s00429-018-1734-x) contains supplementary material, which is available to authorized users. Springer Berlin Heidelberg 2018-08-17 2018 /pmc/articles/PMC6267264/ /pubmed/30120553 http://dx.doi.org/10.1007/s00429-018-1734-x Text en © The Author(s) 2018 Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.
spellingShingle Original Article
Jung, JeYoung
Visser, Maya
Binney, Richard J.
Lambon Ralph, Matthew A.
Establishing the cognitive signature of human brain networks derived from structural and functional connectivity
title Establishing the cognitive signature of human brain networks derived from structural and functional connectivity
title_full Establishing the cognitive signature of human brain networks derived from structural and functional connectivity
title_fullStr Establishing the cognitive signature of human brain networks derived from structural and functional connectivity
title_full_unstemmed Establishing the cognitive signature of human brain networks derived from structural and functional connectivity
title_short Establishing the cognitive signature of human brain networks derived from structural and functional connectivity
title_sort establishing the cognitive signature of human brain networks derived from structural and functional connectivity
topic Original Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6267264/
https://www.ncbi.nlm.nih.gov/pubmed/30120553
http://dx.doi.org/10.1007/s00429-018-1734-x
work_keys_str_mv AT jungjeyoung establishingthecognitivesignatureofhumanbrainnetworksderivedfromstructuralandfunctionalconnectivity
AT vissermaya establishingthecognitivesignatureofhumanbrainnetworksderivedfromstructuralandfunctionalconnectivity
AT binneyrichardj establishingthecognitivesignatureofhumanbrainnetworksderivedfromstructuralandfunctionalconnectivity
AT lambonralphmatthewa establishingthecognitivesignatureofhumanbrainnetworksderivedfromstructuralandfunctionalconnectivity