Cargando…

Influence of Bitumen Type and Asphalt Mixture Composition on Low-Temperature Strength Properties According to Various Test Methods

In regions with low-temperatures, action transverse cracks can appear in asphalt pavements as a result of thermal stresses that exceed the fracture strength of materials used in asphalt layers. To better understand thermal cracking phenomenon, strength properties of different asphalt mixtures were i...

Descripción completa

Detalles Bibliográficos
Autores principales: Pszczola, Marek, Szydlowski, Cezary
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6267332/
https://www.ncbi.nlm.nih.gov/pubmed/30373316
http://dx.doi.org/10.3390/ma11112118
Descripción
Sumario:In regions with low-temperatures, action transverse cracks can appear in asphalt pavements as a result of thermal stresses that exceed the fracture strength of materials used in asphalt layers. To better understand thermal cracking phenomenon, strength properties of different asphalt mixtures were investigated. Four test methods were used to assess the influence of bitumen type and mixture composition on tensile strength properties of asphalt mixtures: tensile strength was measured using the thermal stress restrained specimen test (TSRST) and the uniaxial tension stress test (UTST), flexural strength was measured using the bending beam test (BBT), and fracture toughness was measured using the semi-circular bending test (SCB). The strength reserve behavior of tested asphalt mixtures was assessed as well. The influence of cooling rate on the strength reserve was investigated and correlations between results from different test methods were also analyzed and discussed. It was observed that the type of bitumen was a factor of crucial importance to low-temperature properties of the tested asphalt concretes. This conclusion was valid for all test methods that were used. It was also observed that the level of cooling rate influenced the strength reserve and, in consequence, resistance to low-temperature cracking. It was concluded that reasonably good correlations were observed between strength results for the UTST, BBT, and SCB test methods.