Cargando…
Impaired cerebral compensatory reserve is associated with admission imaging characteristics of diffuse insult in traumatic brain injury
BACKGROUND: Continuous assessment of cerebral compensatory reserve is possible using the moving correlation between pulse amplitude of intra-cranial pressure (AMP) and intra-cranial pressure (ICP), called RAP. Little is known about the behavior and associations of this index in adult traumatic brain...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer Vienna
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6267721/ https://www.ncbi.nlm.nih.gov/pubmed/30251196 http://dx.doi.org/10.1007/s00701-018-3681-y |
Sumario: | BACKGROUND: Continuous assessment of cerebral compensatory reserve is possible using the moving correlation between pulse amplitude of intra-cranial pressure (AMP) and intra-cranial pressure (ICP), called RAP. Little is known about the behavior and associations of this index in adult traumatic brain injury (TBI). The goal of this study is to evaluate the association between admission cerebral imaging findings and RAP over the course of the acute intensive care unit stay. METHODS: We retrospectively reviewed 358 adult TBI patients admitted to the Addenbrooke’s Hospital, University of Cambridge, from March 2005 to December 2016. Only non-craniectomy patients were studied. Using archived high frequency physiologic signals, RAP was derived and analyzed over the first 48 h and first 10 days of recording in each patient, using grand mean, percentage of time above various thresholds, and integrated area under the curve (AUC) of RAP over time. Associations between these values and admission computed tomography (CT) injury characteristics were evaluated. RESULTS: The integrated AUC, based on various thresholds of RAP, was statistically associated with admission CT markers of diffuse TBI and cerebral edema. Admission CT findings of cortical gyral effacement, lateral ventricle compression, diffuse cortical subarachnoid hemorrhage (SAH), thickness of cortical SAH, presence of bilateral contusions, and subcortical diffuse axonal injury (DAI) were all associated with AUC of RAP over time. Joncheere-Terpstra testing indicated a statistically significant increase in mean RAP AUC across ordinal categories of the abovementioned associated CT findings. CONCLUSIONS: RAP is associated with cerebral CT injury patterns of diffuse injury and edema, providing some confirmation of its potential measurement of cerebral compensatory reserve in TBI. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (10.1007/s00701-018-3681-y) contains supplementary material, which is available to authorized users. |
---|