Cargando…
Learning the optimal scale for GWAS through hierarchical SNP aggregation
BACKGROUND: Genome-Wide Association Studies (GWAS) seek to identify causal genomic variants associated with rare human diseases. The classical statistical approach for detecting these variants is based on univariate hypothesis testing, with healthy individuals being tested against affected individua...
Autores principales: | Guinot, Florent, Szafranski, Marie, Ambroise, Christophe, Samson, Franck |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6267789/ https://www.ncbi.nlm.nih.gov/pubmed/30497371 http://dx.doi.org/10.1186/s12859-018-2475-9 |
Ejemplares similares
-
Fast computation of genome-metagenome interaction effects
por: Guinot, Florent, et al.
Publicado: (2020) -
Fast tree aggregation for consensus hierarchical clustering
por: Hulot, Audrey, et al.
Publicado: (2020) -
A hierarchical machine learning framework for the analysis of large scale animal movement data
por: Torney, Colin J., et al.
Publicado: (2021) -
Application of machine learning in SNP discovery
por: Matukumalli, Lakshmi K, et al.
Publicado: (2006) -
Optimizing a Bayesian hierarchical adaptive platform trial design for stroke patients
por: Gao, Guangyi, et al.
Publicado: (2022)