Cargando…

Sporosarcina pasteurii can clog and strengthen a porous medium mimic

The bacterium Sporosarcina pasteurii can produce significant volumes of solid precipitation in the presence of specific chemical environments. These solid precipitate particles can enter a network of microscale pores and cause long-range clogging. As a result, the medium gains strength and exhibits...

Descripción completa

Detalles Bibliográficos
Autores principales: Bhaduri, Swayamdipta, Montemagno, Carlo
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Public Library of Science 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6267956/
https://www.ncbi.nlm.nih.gov/pubmed/30500841
http://dx.doi.org/10.1371/journal.pone.0207489
Descripción
Sumario:The bacterium Sporosarcina pasteurii can produce significant volumes of solid precipitation in the presence of specific chemical environments. These solid precipitate particles can enter a network of microscale pores and cause long-range clogging. As a result, the medium gains strength and exhibits superior mechanical properties. This concept is also known as Microbiologically Induced Calcite Precipitation (MICP). In this study, we have used sponge blocks as surrogate porous media mimics and analyzed several aspects of MICP. A synergistic approach involving electron microscopy (SEM), computerized X-Ray tomography (μCT), quasi-static compressive load testing and chemical characterization (EDX) has been used to understand several physical and chemical aspects of MICP.