Cargando…

Differential metabolomics analysis allows characterization of diversity of metabolite networks between males and females

Females and males are known to have different abilities to cope with stress and disease. This study was designed to investigate the effect of sex on properties of a complex interlinked network constructed of central biochemical metabolites. The study involved the blood collection and analysis of a l...

Descripción completa

Detalles Bibliográficos
Autores principales: Li, Zimin, Zhang, Yuxi, Hu, Ting, Likhodii, Sergei, Sun, Guang, Zhai, Guangju, Fan, Zhaozhi, Xuan, Chunji, Zhang, Weidong
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Public Library of Science 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6267973/
https://www.ncbi.nlm.nih.gov/pubmed/30500833
http://dx.doi.org/10.1371/journal.pone.0207775
Descripción
Sumario:Females and males are known to have different abilities to cope with stress and disease. This study was designed to investigate the effect of sex on properties of a complex interlinked network constructed of central biochemical metabolites. The study involved the blood collection and analysis of a large set of blood metabolic markers from a total of 236 healthy participants, which included 140 females and 96 males. Metabolic profiling yielded concentrations of 168 metabolites for each subject. A differential correlation network analysis approach was developed for this study that allowed detection and characterization of interconnection differences in metabolites in males and females. Through topological analysis of the differential network that depicted metabolite differences in the sexes, we identified metabolites with high centralities in this network. These key metabolites were identified as 10 phosphatidylcholines (PCaaC34:4, PCaaC36:6, PCaaC34:3, PCaaC42:2, PCaeC38:1, PCaeC38:2, PCaaC40:1, PCaeC34:1, PC aa C32:1 and PC aa C40:6) and 4 acylcarnitines (C3-OH, C7-DC, C3 and C0). Identification of these metabolites may help further studies of sex-specific differences in the metabolome that may underlie different responses to stress and disease in males and females.