Cargando…

MMP-9 inhibition promotes anti-tumor immunity through disruption of biochemical and physical barriers to T-cell trafficking to tumors

Matrix metalloproteinase-9 (MMP-9), whose expression is frequently dysregulated in cancer, promotes tumor growth, invasion, and metastasis by multiple mechanisms, including extracellular matrix remodeling and growth-factor and cytokine activation. We developed a monoclonal antibody against murine MM...

Descripción completa

Detalles Bibliográficos
Autores principales: Juric, Vladi, O'Sullivan, Chris, Stefanutti, Erin, Kovalenko, Maria, Greenstein, Andrew, Barry-Hamilton, Vivian, Mikaelian, Igor, Degenhardt, Jeremiah, Yue, Peng, Smith, Victoria, Mikels-Vigdal, Amanda
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Public Library of Science 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6267998/
https://www.ncbi.nlm.nih.gov/pubmed/30500835
http://dx.doi.org/10.1371/journal.pone.0207255
Descripción
Sumario:Matrix metalloproteinase-9 (MMP-9), whose expression is frequently dysregulated in cancer, promotes tumor growth, invasion, and metastasis by multiple mechanisms, including extracellular matrix remodeling and growth-factor and cytokine activation. We developed a monoclonal antibody against murine MMP-9, which we found decreased growth of established primary tumors in an orthotopic model of HER2-driven breast cancer (HC11-NeuT) in immunocompetent mice. RNA sequencing (RNAseq) profiling of NeuT tumors and additional mouse model tumors revealed that anti-MMP-9 treatment resulted in upregulation of immune signature pathways associated with cytotoxic T-cell response. As there is a need to boost the low response rates observed with anti-PDL1 antibody treatment in the clinical setting, we assessed the potential of anti-MMP-9 to improve T-cell response to immune checkpoint inhibitor anti-PDL1 in NeuT tumors. Anti-MMP-9 and anti-PDL1 cotreatment reduced T-cell receptor (TCR) clonality and increased TCR diversity, as detected by TCR sequencing of NeuT tumors. Flow cytometry analyses of tumors showed that the combination treatment increased the frequency of CD3+ T cells, including memory/effector CD4 and CD8 T cells, but not regulatory T cells, among tumor-infiltrating leukocytes. Moreover, in vitro enzymatic assays corroborated that MMP-9 cleaves key T-cell chemoattractant CXC receptor 3 ligands (CXC ligand [CXCL] 9, CXCL10, and CXCL11) and renders them inactive in T-cell migration assays. Consistent with our in vitro experiments, analysis of NeuT tumor protein lysates showed that anti-MMP-9 treatment increases expression of CXCL10 and other T cell–stimulating factors, such as interleukin (IL)-12p70 and IL-18. We show that inhibition of MMP-9, a key component of the tumor-promoting and immune-suppressive myeloid inflammatory milieu, increases T-helper cell 1 type cytokines, trafficking of effector/memory T cells into tumors, and intratumoral T-cell diversity.