Cargando…
TBK1 and IKKε prevent TNF-induced cell death by RIPK1 phosphorylation
LUBAC modulates signalling by various immune receptors. In TNF signalling, linear (also known as M1) ubiquitin enables full gene-activation and prevents cell death. However, the mechanisms underlying cell-death prevention remain ill-defined. We show that LUBAC activity enables TBK1 and IKKε recruitm...
Autores principales: | , , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6268100/ https://www.ncbi.nlm.nih.gov/pubmed/30420664 http://dx.doi.org/10.1038/s41556-018-0229-6 |
Sumario: | LUBAC modulates signalling by various immune receptors. In TNF signalling, linear (also known as M1) ubiquitin enables full gene-activation and prevents cell death. However, the mechanisms underlying cell-death prevention remain ill-defined. We show that LUBAC activity enables TBK1 and IKKε recruitment to and activation at the TNFR1-signalling complex (TNFR1-SC). Whilst exerting only limited effects on TNF-induced gene-activation, TBK1/IKKε are essential to prevent TNF-induced cell death. Mechanistically, TBK1/IKKε phosphorylate RIPK1 in the TNFR1-SC, thereby preventing RIPK1-kinase-activity-dependent cell death. This activity is essential in vivo, as it prevents TNF-induced lethal shock. Strikingly, NEMO/IKKγ, which mostly, but not exclusively, binds to the TNFR1-SC via M1-ubiquitin, mediates recruitment of the adaptors TANK and NAP1/AZI2 which are constitutively associated with TBK1/IKKε and TBK1, respectively. We here discover a previously unrecognised TBK1/IKKε-mediated cell-death checkpoint and uncover an essential survival function for NEMO by enabling recruitment and activation of these noncanonical IKKs to prevent TNF-induced cell death. |
---|