Cargando…

Specific Binding of Anionic Porphyrin and Phthalocyanine to the G-Quadruplex with a Variety of in Vitro and in Vivo Applications

The G-quadruplex, a four-stranded DNA structure with stacked guanine tetrads (G-quartets), has recently been attracting attention because of its critical roles in vitro and in vivo. In particular, the G-quadruplex functions as ligands for metal ions and aptamers for various molecules. Interestingly,...

Descripción completa

Detalles Bibliográficos
Autores principales: Yaku, Hidenobu, Murashima, Takashi, Miyoshi, Daisuke, Sugimoto, Naoki
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2012
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6268517/
https://www.ncbi.nlm.nih.gov/pubmed/22951397
http://dx.doi.org/10.3390/molecules170910586
Descripción
Sumario:The G-quadruplex, a four-stranded DNA structure with stacked guanine tetrads (G-quartets), has recently been attracting attention because of its critical roles in vitro and in vivo. In particular, the G-quadruplex functions as ligands for metal ions and aptamers for various molecules. Interestingly, the G-quadruplex can show peroxidase-like activity with an anionic porphyrin, iron (III) protoporphyrin IX (hemin). Importantly, hemin binds to G-quadruplexes with high selectivity over single-stranded DNA (ssDNA) and double-stranded DNA (dsDNA), which is attributable to an electrostatic repulsion of phosphate groups in ssDNA and dsDNA. The G-quadruplex and hemin-G-quadruplex complex allow development of sensing techniques to detect DNA, metal ions and proteins. In addition to hemin, anionic phthalocyanines also bind to the G-quadruplex formed by human telomere DNA, specifically over ssDNA and dsDNA. Since the binding of anionic phthalocyanines to the G-quadruplex causes an inhibition of telomerase activity, which plays a role in the immortal growth of cancer cells, anionic phthalocyanines are promising as novel anticancer drug candidates. This review focuses on the specific binding of hemin and anionic phthalocyanines to G-quadruplexes and the applications in vitro and in vivo of this binding property.