Cargando…
Spectroscopy and Speciation Studies on the Interactions of Aluminum (III) with Ciprofloxacin and β-Nicotinamide Adenine Dinucleotide Phosphate in Aqueous Solutions
In this study, both experimental and theoretical approaches, including absorption spectra, fluorescence emission spectra, (1)H- and (31)P-NMR, electrospray ionization mass spectrometry (ESI-MS), pH-potentiometry and theoretical approaches using the BEST & SPE computer programs were applied to st...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2012
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6268657/ https://www.ncbi.nlm.nih.gov/pubmed/22864244 http://dx.doi.org/10.3390/molecules17089379 |
_version_ | 1783376337027727360 |
---|---|
author | Ma, Xiaoling Li, Li Xu, Chongzheng Wei, Haiyan Wang, Xianlong Yang, Xiaodi |
author_facet | Ma, Xiaoling Li, Li Xu, Chongzheng Wei, Haiyan Wang, Xianlong Yang, Xiaodi |
author_sort | Ma, Xiaoling |
collection | PubMed |
description | In this study, both experimental and theoretical approaches, including absorption spectra, fluorescence emission spectra, (1)H- and (31)P-NMR, electrospray ionization mass spectrometry (ESI-MS), pH-potentiometry and theoretical approaches using the BEST & SPE computer programs were applied to study the competitive complexation between ciprofloxacin (CIP) and β-nicotinamide adenine dinucleotide phosphate (NADP) with aluminum (III) in aqueous solutions. Rank annihilation factor analysis (RAFA) was used to analyze the absorption and fluorescence emission spectra of the ligands, the binary complexes and the ternary complexes. It is found, at the μM total concentration level and pH = 7.0, the bidentate mononuclear species [Al(CIP)](2+) and [Al(NADP)] predominate in the aqueous solutions of the Al(III)-CIP and Al(III)-NADP systems, and the two complexes have similar conditional stability constants. However, the pH-potentiometry results show at the mM total concentration level and pH = 7.0, the ternary species [Al(CIP)(HNADP)] predominates in the ternary complex system. Comparing predicted NMR spectra with the experimental NMR results, it can be concluded that for the ternary complex, CIP binds to aluminum ion between the 3-carboxylic and 4-carbonyl groups, while the binding site of oxidized coenzyme II is through the oxygen of phosphate, which is linked to adenosine ribose, instead of pyrophosphate. The results also suggested CIP has the potential to be a probe molecular for the detection of NADP and the Al(III)-NADP complexes under physiological condition. |
format | Online Article Text |
id | pubmed-6268657 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2012 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-62686572018-12-12 Spectroscopy and Speciation Studies on the Interactions of Aluminum (III) with Ciprofloxacin and β-Nicotinamide Adenine Dinucleotide Phosphate in Aqueous Solutions Ma, Xiaoling Li, Li Xu, Chongzheng Wei, Haiyan Wang, Xianlong Yang, Xiaodi Molecules Article In this study, both experimental and theoretical approaches, including absorption spectra, fluorescence emission spectra, (1)H- and (31)P-NMR, electrospray ionization mass spectrometry (ESI-MS), pH-potentiometry and theoretical approaches using the BEST & SPE computer programs were applied to study the competitive complexation between ciprofloxacin (CIP) and β-nicotinamide adenine dinucleotide phosphate (NADP) with aluminum (III) in aqueous solutions. Rank annihilation factor analysis (RAFA) was used to analyze the absorption and fluorescence emission spectra of the ligands, the binary complexes and the ternary complexes. It is found, at the μM total concentration level and pH = 7.0, the bidentate mononuclear species [Al(CIP)](2+) and [Al(NADP)] predominate in the aqueous solutions of the Al(III)-CIP and Al(III)-NADP systems, and the two complexes have similar conditional stability constants. However, the pH-potentiometry results show at the mM total concentration level and pH = 7.0, the ternary species [Al(CIP)(HNADP)] predominates in the ternary complex system. Comparing predicted NMR spectra with the experimental NMR results, it can be concluded that for the ternary complex, CIP binds to aluminum ion between the 3-carboxylic and 4-carbonyl groups, while the binding site of oxidized coenzyme II is through the oxygen of phosphate, which is linked to adenosine ribose, instead of pyrophosphate. The results also suggested CIP has the potential to be a probe molecular for the detection of NADP and the Al(III)-NADP complexes under physiological condition. MDPI 2012-08-03 /pmc/articles/PMC6268657/ /pubmed/22864244 http://dx.doi.org/10.3390/molecules17089379 Text en © 2012 by the authors; licensee MDPI, Basel, Switzerland. http://creativecommons.org/licenses/by/3.0/ This article is an open-access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/). |
spellingShingle | Article Ma, Xiaoling Li, Li Xu, Chongzheng Wei, Haiyan Wang, Xianlong Yang, Xiaodi Spectroscopy and Speciation Studies on the Interactions of Aluminum (III) with Ciprofloxacin and β-Nicotinamide Adenine Dinucleotide Phosphate in Aqueous Solutions |
title | Spectroscopy and Speciation Studies on the Interactions of Aluminum (III) with Ciprofloxacin and β-Nicotinamide Adenine Dinucleotide Phosphate in Aqueous Solutions |
title_full | Spectroscopy and Speciation Studies on the Interactions of Aluminum (III) with Ciprofloxacin and β-Nicotinamide Adenine Dinucleotide Phosphate in Aqueous Solutions |
title_fullStr | Spectroscopy and Speciation Studies on the Interactions of Aluminum (III) with Ciprofloxacin and β-Nicotinamide Adenine Dinucleotide Phosphate in Aqueous Solutions |
title_full_unstemmed | Spectroscopy and Speciation Studies on the Interactions of Aluminum (III) with Ciprofloxacin and β-Nicotinamide Adenine Dinucleotide Phosphate in Aqueous Solutions |
title_short | Spectroscopy and Speciation Studies on the Interactions of Aluminum (III) with Ciprofloxacin and β-Nicotinamide Adenine Dinucleotide Phosphate in Aqueous Solutions |
title_sort | spectroscopy and speciation studies on the interactions of aluminum (iii) with ciprofloxacin and β-nicotinamide adenine dinucleotide phosphate in aqueous solutions |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6268657/ https://www.ncbi.nlm.nih.gov/pubmed/22864244 http://dx.doi.org/10.3390/molecules17089379 |
work_keys_str_mv | AT maxiaoling spectroscopyandspeciationstudiesontheinteractionsofaluminumiiiwithciprofloxacinandbnicotinamideadeninedinucleotidephosphateinaqueoussolutions AT lili spectroscopyandspeciationstudiesontheinteractionsofaluminumiiiwithciprofloxacinandbnicotinamideadeninedinucleotidephosphateinaqueoussolutions AT xuchongzheng spectroscopyandspeciationstudiesontheinteractionsofaluminumiiiwithciprofloxacinandbnicotinamideadeninedinucleotidephosphateinaqueoussolutions AT weihaiyan spectroscopyandspeciationstudiesontheinteractionsofaluminumiiiwithciprofloxacinandbnicotinamideadeninedinucleotidephosphateinaqueoussolutions AT wangxianlong spectroscopyandspeciationstudiesontheinteractionsofaluminumiiiwithciprofloxacinandbnicotinamideadeninedinucleotidephosphateinaqueoussolutions AT yangxiaodi spectroscopyandspeciationstudiesontheinteractionsofaluminumiiiwithciprofloxacinandbnicotinamideadeninedinucleotidephosphateinaqueoussolutions |