Cargando…

Phenolic Alkaloids from Menispermum dauricum Rhizome Protect against Brain Ischemia Injury via Regulation of GLT-1, EAAC1 and ROS Generation

Menispermum dauricum rhizome has been widely used in China to treat various cardiovascular and thrombosis disorders. Some studies have reported that the phenolic alkaloids of Menispermum dauricum rhizome (PAM) have protective effects against brain ischemia injury, but the mechanism of this action re...

Descripción completa

Detalles Bibliográficos
Autores principales: Zhao, Bo, Chen, Yang, Sun, Xi, Zhou, Mei, Ding, Jie, Zhan, Jin-Jin, Guo, Lian-Jun
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2012
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6268705/
https://www.ncbi.nlm.nih.gov/pubmed/22395403
http://dx.doi.org/10.3390/molecules17032725
Descripción
Sumario:Menispermum dauricum rhizome has been widely used in China to treat various cardiovascular and thrombosis disorders. Some studies have reported that the phenolic alkaloids of Menispermum dauricum rhizome (PAM) have protective effects against brain ischemia injury, but the mechanism of this action remains to be clarified. In the present study, we investigated the possible mechanisms of action of PAM on experimental brain ischemia injury. Oxygen and glucose deprivation (OGD) in rat primary cortical cultures and middle cerebral artery occlusion in rats were used to mimic ischemia-reperfusion injury, respectively. The results suggested that PAM protected rat primary cortical cultures against OGD-reoxygenation induced cytotoxicity. PAM decreased extracellular glutamate content and markedly prevented the effects induced by OGD on protein level of GLT-1 and EAAC1 glutamate transporters. In addition, it reduced intracellular ROS generation. In vivo, PAM significantly reduced cerebral infarct area and ameliorated neurological functional deficits at different time points. Our findings revealed that the possible mechanism of action of PAM protected against brain ischemia injury involves regulation of GLT-1, EAAC1 and ROS generation.