Cargando…

Butylated Hydroxytoluene Analogs: Synthesis and Evaluation of Their Multipotent Antioxidant Activities

A computer-aided predictions of antioxidant activities were performed with the Prediction Activity Spectra of Substances (PASS) program. Antioxidant activity of compounds 1, 3, 4 and 5 were studied using 1,1-diphenyl-2-picrylhydrazyl (DPPH) and lipid peroxidation assays to verify the predictions obt...

Descripción completa

Detalles Bibliográficos
Autores principales: Yehye, Wageeh A., Abdul Rahman, Noorsaadah, A. Alhadi, Abeer, Khaledi, Hamid, Ng, Seik Weng, Ariffin, Azhar
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2012
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6268739/
https://www.ncbi.nlm.nih.gov/pubmed/22732881
http://dx.doi.org/10.3390/molecules17077645
Descripción
Sumario:A computer-aided predictions of antioxidant activities were performed with the Prediction Activity Spectra of Substances (PASS) program. Antioxidant activity of compounds 1, 3, 4 and 5 were studied using 1,1-diphenyl-2-picrylhydrazyl (DPPH) and lipid peroxidation assays to verify the predictions obtained by the PASS program. Compounds 3 and 5 showed more inhibition of DPPH stable free radical at 10(−4) M than the well-known standard antioxidant, butylated hydroxytoluene (BHT). Compound 5 exhibited promising in vitro inhibition of Fe(2+)-induced lipid peroxidation of the essential egg yolk as a lipid-rich medium (83.99%, IC(50) 16.07 ± 3.51 µM/mL) compared to α-tocopherol (α-TOH, 84.6%, IC(50) 5.6 ± 1.09 µM/mL). The parameters for drug-likeness of these BHT analogues were also evaluated according to the Lipinski’s “rule-of-five” (RO5). All the BHT analogues were found to violate one of the Lipinski’s parameters (LogP > 5), even though they have been found to be soluble in protic solvents. The predictive polar surface area (PSA) and absorption percent (% ABS) data allow us to conclude that they could have a good capacity for penetrating cell membranes. Therefore, one can propose these new multipotent antioxidants (MPAOs) as potential antioxidants for tackling oxidative stress and lipid peroxidation processes.