Cargando…
Controlled Fabrication of Flower-like Nickel Oxide Hierarchical Structures and Their Application in Water Treatment
Flower-like NiO hierarchical structures with 2–5 μm diameter assembled from nanosheet building blocks have been successfully fabricated via a wet-chemical method combined with thermodecomposition technology. The template-free method is facile and effective in preparing flower-like NiO superstructure...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2012
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6268771/ https://www.ncbi.nlm.nih.gov/pubmed/22241466 http://dx.doi.org/10.3390/molecules17010703 |
Sumario: | Flower-like NiO hierarchical structures with 2–5 μm diameter assembled from nanosheet building blocks have been successfully fabricated via a wet-chemical method combined with thermodecomposition technology. The template-free method is facile and effective in preparing flower-like NiO superstructures in high yield. The intermediate product and final hierarchical structures are characterized by transmission electron microscopy (TEM), scanning electron microscopy (SEM), X-ray diffraction (XRD), Fourier transform IR (FTIR), and thermogravimetric analysis (TGA). The effects of growth temperature and reaction time on the morphologies of the as-prepared structures were investigated by SEM characterization and a possible mechanism for the formation of flower-like NiO is proposed. Based on the nitrogen adsorption and desorption measurements, the BET surface area of the as-obtained sample is 55.7 m(2)/g and the pore-size distribution plot indicates a bimodal mesopore distribution, with pore sizes of ca. 2.6 nm and 7.4 nm, respectively. In comparison with sphere-like and rod-like structures, the flower-like NiO hierarchical structures show an excellent ability to rapidly remove various pollutants when used as adsorbent and photocatalyst in waste-water treatment, which may be attributed to its unique hierarchical and porous surface structures. |
---|