Cargando…

Modeling Chemical Interaction Profiles: II. Molecular Docking, Spectral Data-Activity Relationship, and Structure-Activity Relationship Models for Potent and Weak Inhibitors of Cytochrome P450 CYP3A4 Isozyme

Polypharmacy increasingly has become a topic of public health concern, particularly as the U.S. population ages. Drug labels often contain insufficient information to enable the clinician to safely use multiple drugs. Because many of the drugs are bio-transformed by cytochrome P450 (CYP) enzymes, in...

Descripción completa

Detalles Bibliográficos
Autores principales: Tie, Yunfeng, McPhail, Brooks, Hong, Huixiao, Pearce, Bruce A., Schnackenberg, Laura K., Ge, Weigong, Buzatu, Dan A., Wilkes, Jon G., Fuscoe, James C., Tong, Weida, Fowler, Bruce A., Beger, Richard D., Demchuk, Eugene
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2012
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6268819/
https://www.ncbi.nlm.nih.gov/pubmed/22421793
http://dx.doi.org/10.3390/molecules17033407
_version_ 1783376374443016192
author Tie, Yunfeng
McPhail, Brooks
Hong, Huixiao
Pearce, Bruce A.
Schnackenberg, Laura K.
Ge, Weigong
Buzatu, Dan A.
Wilkes, Jon G.
Fuscoe, James C.
Tong, Weida
Fowler, Bruce A.
Beger, Richard D.
Demchuk, Eugene
author_facet Tie, Yunfeng
McPhail, Brooks
Hong, Huixiao
Pearce, Bruce A.
Schnackenberg, Laura K.
Ge, Weigong
Buzatu, Dan A.
Wilkes, Jon G.
Fuscoe, James C.
Tong, Weida
Fowler, Bruce A.
Beger, Richard D.
Demchuk, Eugene
author_sort Tie, Yunfeng
collection PubMed
description Polypharmacy increasingly has become a topic of public health concern, particularly as the U.S. population ages. Drug labels often contain insufficient information to enable the clinician to safely use multiple drugs. Because many of the drugs are bio-transformed by cytochrome P450 (CYP) enzymes, inhibition of CYP activity has long been associated with potentially adverse health effects. In an attempt to reduce the uncertainty pertaining to CYP-mediated drug-drug/chemical interactions, an interagency collaborative group developed a consensus approach to prioritizing information concerning CYP inhibition. The consensus involved computational molecular docking, spectral data-activity relationship (SDAR), and structure-activity relationship (SAR) models that addressed the clinical potency of CYP inhibition. The models were built upon chemicals that were categorized as either potent or weak inhibitors of the CYP3A4 isozyme. The categorization was carried out using information from clinical trials because currently available in vitro high-throughput screening data were not fully representative of the in vivo potency of inhibition. During categorization it was found that compounds, which break the Lipinski rule of five by molecular weight, were about twice more likely to be inhibitors of CYP3A4 compared to those, which obey the rule. Similarly, among inhibitors that break the rule, potent inhibitors were 2–3 times more frequent. The molecular docking classification relied on logistic regression, by which the docking scores from different docking algorithms, CYP3A4 three-dimensional structures, and binding sites on them were combined in a unified probabilistic model. The SDAR models employed a multiple linear regression approach applied to binned 1D (13)C-NMR and 1D (15)N-NMR spectral descriptors. Structure-based and physical-chemical descriptors were used as the basis for developing SAR models by the decision forest method. Thirty-three potent inhibitors and 88 weak inhibitors of CYP3A4 were used to train the models. Using these models, a synthetic majority rules consensus classifier was implemented, while the confidence of estimation was assigned following the percent agreement strategy. The classifier was applied to a testing set of 120 inhibitors not included in the development of the models. Five compounds of the test set, including known strong inhibitors dalfopristin and tioconazole, were classified as probable potent inhibitors of CYP3A4. Other known strong inhibitors, such as lopinavir, oltipraz, quercetin, raloxifene, and troglitazone, were among 18 compounds classified as plausible potent inhibitors of CYP3A4. The consensus estimation of inhibition potency is expected to aid in the nomination of pharmaceuticals, dietary supplements, environmental pollutants, and occupational and other chemicals for in-depth evaluation of the CYP3A4 inhibitory activity. It may serve also as an estimate of chemical interactions via CYP3A4 metabolic pharmacokinetic pathways occurring through polypharmacy and nutritional and environmental exposures to chemical mixtures.
format Online
Article
Text
id pubmed-6268819
institution National Center for Biotechnology Information
language English
publishDate 2012
publisher MDPI
record_format MEDLINE/PubMed
spelling pubmed-62688192018-12-20 Modeling Chemical Interaction Profiles: II. Molecular Docking, Spectral Data-Activity Relationship, and Structure-Activity Relationship Models for Potent and Weak Inhibitors of Cytochrome P450 CYP3A4 Isozyme Tie, Yunfeng McPhail, Brooks Hong, Huixiao Pearce, Bruce A. Schnackenberg, Laura K. Ge, Weigong Buzatu, Dan A. Wilkes, Jon G. Fuscoe, James C. Tong, Weida Fowler, Bruce A. Beger, Richard D. Demchuk, Eugene Molecules Article Polypharmacy increasingly has become a topic of public health concern, particularly as the U.S. population ages. Drug labels often contain insufficient information to enable the clinician to safely use multiple drugs. Because many of the drugs are bio-transformed by cytochrome P450 (CYP) enzymes, inhibition of CYP activity has long been associated with potentially adverse health effects. In an attempt to reduce the uncertainty pertaining to CYP-mediated drug-drug/chemical interactions, an interagency collaborative group developed a consensus approach to prioritizing information concerning CYP inhibition. The consensus involved computational molecular docking, spectral data-activity relationship (SDAR), and structure-activity relationship (SAR) models that addressed the clinical potency of CYP inhibition. The models were built upon chemicals that were categorized as either potent or weak inhibitors of the CYP3A4 isozyme. The categorization was carried out using information from clinical trials because currently available in vitro high-throughput screening data were not fully representative of the in vivo potency of inhibition. During categorization it was found that compounds, which break the Lipinski rule of five by molecular weight, were about twice more likely to be inhibitors of CYP3A4 compared to those, which obey the rule. Similarly, among inhibitors that break the rule, potent inhibitors were 2–3 times more frequent. The molecular docking classification relied on logistic regression, by which the docking scores from different docking algorithms, CYP3A4 three-dimensional structures, and binding sites on them were combined in a unified probabilistic model. The SDAR models employed a multiple linear regression approach applied to binned 1D (13)C-NMR and 1D (15)N-NMR spectral descriptors. Structure-based and physical-chemical descriptors were used as the basis for developing SAR models by the decision forest method. Thirty-three potent inhibitors and 88 weak inhibitors of CYP3A4 were used to train the models. Using these models, a synthetic majority rules consensus classifier was implemented, while the confidence of estimation was assigned following the percent agreement strategy. The classifier was applied to a testing set of 120 inhibitors not included in the development of the models. Five compounds of the test set, including known strong inhibitors dalfopristin and tioconazole, were classified as probable potent inhibitors of CYP3A4. Other known strong inhibitors, such as lopinavir, oltipraz, quercetin, raloxifene, and troglitazone, were among 18 compounds classified as plausible potent inhibitors of CYP3A4. The consensus estimation of inhibition potency is expected to aid in the nomination of pharmaceuticals, dietary supplements, environmental pollutants, and occupational and other chemicals for in-depth evaluation of the CYP3A4 inhibitory activity. It may serve also as an estimate of chemical interactions via CYP3A4 metabolic pharmacokinetic pathways occurring through polypharmacy and nutritional and environmental exposures to chemical mixtures. MDPI 2012-03-15 /pmc/articles/PMC6268819/ /pubmed/22421793 http://dx.doi.org/10.3390/molecules17033407 Text en © 2012 by the authors; licensee MDPI, Basel, Switzerland. http://creativecommons.org/licenses/by/3.0/ This article is an open-access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).
spellingShingle Article
Tie, Yunfeng
McPhail, Brooks
Hong, Huixiao
Pearce, Bruce A.
Schnackenberg, Laura K.
Ge, Weigong
Buzatu, Dan A.
Wilkes, Jon G.
Fuscoe, James C.
Tong, Weida
Fowler, Bruce A.
Beger, Richard D.
Demchuk, Eugene
Modeling Chemical Interaction Profiles: II. Molecular Docking, Spectral Data-Activity Relationship, and Structure-Activity Relationship Models for Potent and Weak Inhibitors of Cytochrome P450 CYP3A4 Isozyme
title Modeling Chemical Interaction Profiles: II. Molecular Docking, Spectral Data-Activity Relationship, and Structure-Activity Relationship Models for Potent and Weak Inhibitors of Cytochrome P450 CYP3A4 Isozyme
title_full Modeling Chemical Interaction Profiles: II. Molecular Docking, Spectral Data-Activity Relationship, and Structure-Activity Relationship Models for Potent and Weak Inhibitors of Cytochrome P450 CYP3A4 Isozyme
title_fullStr Modeling Chemical Interaction Profiles: II. Molecular Docking, Spectral Data-Activity Relationship, and Structure-Activity Relationship Models for Potent and Weak Inhibitors of Cytochrome P450 CYP3A4 Isozyme
title_full_unstemmed Modeling Chemical Interaction Profiles: II. Molecular Docking, Spectral Data-Activity Relationship, and Structure-Activity Relationship Models for Potent and Weak Inhibitors of Cytochrome P450 CYP3A4 Isozyme
title_short Modeling Chemical Interaction Profiles: II. Molecular Docking, Spectral Data-Activity Relationship, and Structure-Activity Relationship Models for Potent and Weak Inhibitors of Cytochrome P450 CYP3A4 Isozyme
title_sort modeling chemical interaction profiles: ii. molecular docking, spectral data-activity relationship, and structure-activity relationship models for potent and weak inhibitors of cytochrome p450 cyp3a4 isozyme
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6268819/
https://www.ncbi.nlm.nih.gov/pubmed/22421793
http://dx.doi.org/10.3390/molecules17033407
work_keys_str_mv AT tieyunfeng modelingchemicalinteractionprofilesiimoleculardockingspectraldataactivityrelationshipandstructureactivityrelationshipmodelsforpotentandweakinhibitorsofcytochromep450cyp3a4isozyme
AT mcphailbrooks modelingchemicalinteractionprofilesiimoleculardockingspectraldataactivityrelationshipandstructureactivityrelationshipmodelsforpotentandweakinhibitorsofcytochromep450cyp3a4isozyme
AT honghuixiao modelingchemicalinteractionprofilesiimoleculardockingspectraldataactivityrelationshipandstructureactivityrelationshipmodelsforpotentandweakinhibitorsofcytochromep450cyp3a4isozyme
AT pearcebrucea modelingchemicalinteractionprofilesiimoleculardockingspectraldataactivityrelationshipandstructureactivityrelationshipmodelsforpotentandweakinhibitorsofcytochromep450cyp3a4isozyme
AT schnackenberglaurak modelingchemicalinteractionprofilesiimoleculardockingspectraldataactivityrelationshipandstructureactivityrelationshipmodelsforpotentandweakinhibitorsofcytochromep450cyp3a4isozyme
AT geweigong modelingchemicalinteractionprofilesiimoleculardockingspectraldataactivityrelationshipandstructureactivityrelationshipmodelsforpotentandweakinhibitorsofcytochromep450cyp3a4isozyme
AT buzatudana modelingchemicalinteractionprofilesiimoleculardockingspectraldataactivityrelationshipandstructureactivityrelationshipmodelsforpotentandweakinhibitorsofcytochromep450cyp3a4isozyme
AT wilkesjong modelingchemicalinteractionprofilesiimoleculardockingspectraldataactivityrelationshipandstructureactivityrelationshipmodelsforpotentandweakinhibitorsofcytochromep450cyp3a4isozyme
AT fuscoejamesc modelingchemicalinteractionprofilesiimoleculardockingspectraldataactivityrelationshipandstructureactivityrelationshipmodelsforpotentandweakinhibitorsofcytochromep450cyp3a4isozyme
AT tongweida modelingchemicalinteractionprofilesiimoleculardockingspectraldataactivityrelationshipandstructureactivityrelationshipmodelsforpotentandweakinhibitorsofcytochromep450cyp3a4isozyme
AT fowlerbrucea modelingchemicalinteractionprofilesiimoleculardockingspectraldataactivityrelationshipandstructureactivityrelationshipmodelsforpotentandweakinhibitorsofcytochromep450cyp3a4isozyme
AT begerrichardd modelingchemicalinteractionprofilesiimoleculardockingspectraldataactivityrelationshipandstructureactivityrelationshipmodelsforpotentandweakinhibitorsofcytochromep450cyp3a4isozyme
AT demchukeugene modelingchemicalinteractionprofilesiimoleculardockingspectraldataactivityrelationshipandstructureactivityrelationshipmodelsforpotentandweakinhibitorsofcytochromep450cyp3a4isozyme