Cargando…

Structure-Odor Relationships of α­Santalol Derivatives with Modified Side Chains

(Z)-α-Santalol, which has a unique woody odor, is a main constituent of sandalwood essential oil. We investigated the structure-odor relationship of (Z)-α-santalol and its derivatives, focusing on the relationship between the structure of the side chain and the odor of the compounds. Various α-santa...

Descripción completa

Detalles Bibliográficos
Autores principales: Hasegawa, Toshio, Izumi, Hiroaki, Tajima, Yuji, Yamada, Hideo
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2012
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6268821/
https://www.ncbi.nlm.nih.gov/pubmed/22357322
http://dx.doi.org/10.3390/molecules17022259
Descripción
Sumario:(Z)-α-Santalol, which has a unique woody odor, is a main constituent of sandalwood essential oil. We investigated the structure-odor relationship of (Z)-α-santalol and its derivatives, focusing on the relationship between the structure of the side chain and the odor of the compounds. Various α-santalol derivatives (aldehydes, formates, and acetates) were synthesized from (Z)- and (E)-α-santalol, which were prepared from (+)-3-bromocamphor through modifications of a reported synthetic route. The Z- and E-isomers of α-santalols have different double-bond configurations in the side chain. Analogues with saturated side chains were also prepared from the corresponding α-santalols, and the odors of the all the prepared compounds were evaluated. We found that the odors of the Z-isomers (woody) were similar to those of the corresponding saturated compounds, but clearly different from the odors of the corresponding E-isomers (odorless, fresh, or fatty). These results indicate that the relative configuration of the side chain with respect to the santalane frame plays an important role in the odor of α-santalol. E-configuration in the side chain eliminates the woody odor character of α-santalol and its examined derivatives, whereas the Z-configuration or saturation of the carbon side chain does not.