Cargando…

Gene Cloning, Expression and Activity Analysis of Manganese Superoxide Dismutase from Two Strains of Gracilaria lemaneiformis (Gracilariaceae, Rhodophyta) under Heat Stress

Manganese superoxide dismutase (Mn-SOD) plays a crucial role in antioxidant responses to environmental stress. To determine whether Mn-SOD affects heat resistance of Gracilaria lemaneiformis, we cloned Mn-SOD cDNA sequences of two strains of this red alga, wild type and cultivar 981. Both cDNA seque...

Descripción completa

Detalles Bibliográficos
Autores principales: Lu, Ning, Zang, Xiaonan, Zhang, Xuecheng, Chen, Hao, Feng, Xiaoting, Zhang, Lu
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2012
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6268981/
https://www.ncbi.nlm.nih.gov/pubmed/22508332
http://dx.doi.org/10.3390/molecules17044522
Descripción
Sumario:Manganese superoxide dismutase (Mn-SOD) plays a crucial role in antioxidant responses to environmental stress. To determine whether Mn-SOD affects heat resistance of Gracilaria lemaneiformis, we cloned Mn-SOD cDNA sequences of two strains of this red alga, wild type and cultivar 981. Both cDNA sequences contained an ORF of 675 bp encoding 224 amino acid residues. The cDNA sequences and the deduced amino acid sequences of the two strains shared relatively high identity (more than 99%). No intron existed in genomic DNA of Mn-SOD in G. lemaneiformis. Southern blotting indicated that there were multiple copies, possibly four, of Mn-SOD in both strains. Both in the wild type and cultivar 981, SOD mRNA transcription and SOD activity increased under high temperature stress, while cultivar 981 was more heat resistant based on its SOD activity. This research suggests that there may be a direct relationship between SOD activity and the heat resistance of G. lemaneiformis.