Cargando…

Inhibitory Effect and Mechanism on Antiproliferation of Isoatriplicolide Tiglate (PCAC) from Paulownia Coreana

Paulownia coreana has traditionally been used as the medicine and health food in the treatment of cancer and infectious diseases. In the present study, a new antiproliferation agent, isoatriplicolide tiglate (PCAC) was isolated from the chloroform soluble fraction of the leaves of Paulownia coreana....

Descripción completa

Detalles Bibliográficos
Autores principales: Jung, Samil, Moon, Hyung-In, Ohk, Jiyeon, Lee, Soonduck, Li, Chengping, Kim, Soo-Ki, Lee, Myeong-Sok
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2012
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6269024/
https://www.ncbi.nlm.nih.gov/pubmed/22609785
http://dx.doi.org/10.3390/molecules17055945
Descripción
Sumario:Paulownia coreana has traditionally been used as the medicine and health food in the treatment of cancer and infectious diseases. In the present study, a new antiproliferation agent, isoatriplicolide tiglate (PCAC) was isolated from the chloroform soluble fraction of the leaves of Paulownia coreana. The antiproliferation activities of PCAC plant extract was examined in breast and cervical cancer cell lines in a time-and dose-dependent manners. Our in vitro experiments showed that PCAC suppresses the cell growth and proliferation of cancer cells at a relatively low concentration (<10 µg/mL) and induces apoptosis at a high concentration (>50 µg/mL). Western blot analysis showed that concentration higher than 50 µg/mL induces a time-dependent increase in the percentage of apoptotic cells. In this case, PCAC uses both extrinsic and intrinsic pathways for the apoptosis. PCAC treatment decreased the expression of pro-caspase 8, 9, and 3, the main regulators of apoptotic cell death, in MDA-MB-231 cells, accompanied by the activation of caspase 8, 9, and 3. More importantly, PCAC inhibited the in vitro proliferation of six other human breast and cervical cancer cell lines. In conclusion, our data strongly suggest that PCAC acts as an antiproliferation agents particularly against breast and cervical cancers by inducing cell cycle arrest in the S/G2 phase and caspase dependent apoptosis at relatively low (<10 μg/mL) and high (>50 µg/mL) concentrations, respectively.