Cargando…
Deep learning for lung cancer prognostication: A retrospective multi-cohort radiomics study
BACKGROUND: Non-small-cell lung cancer (NSCLC) patients often demonstrate varying clinical courses and outcomes, even within the same tumor stage. This study explores deep learning applications in medical imaging allowing for the automated quantification of radiographic characteristics and potential...
Autores principales: | Hosny, Ahmed, Parmar, Chintan, Coroller, Thibaud P., Grossmann, Patrick, Zeleznik, Roman, Kumar, Avnish, Bussink, Johan, Gillies, Robert J., Mak, Raymond H., Aerts, Hugo J. W. L. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6269088/ https://www.ncbi.nlm.nih.gov/pubmed/30500819 http://dx.doi.org/10.1371/journal.pmed.1002711 |
Ejemplares similares
-
Exploratory Study to Identify Radiomics Classifiers for Lung Cancer Histology
por: Wu, Weimiao, et al.
Publicado: (2016) -
Machine Learning methods for Quantitative Radiomic Biomarkers
por: Parmar, Chintan, et al.
Publicado: (2015) -
Radiomic feature clusters and Prognostic Signatures specific for Lung and Head & Neck cancer
por: Parmar, Chintan, et al.
Publicado: (2015) -
Associations of Radiomic Data Extracted from Static and Respiratory-Gated CT Scans with Disease Recurrence in Lung Cancer Patients Treated with SBRT
por: Huynh, Elizabeth, et al.
Publicado: (2017) -
Radiomic Machine-Learning Classifiers for Prognostic Biomarkers of Head and Neck Cancer
por: Parmar, Chintan, et al.
Publicado: (2015)