Cargando…
A monoclinic polymorph of sodium birnessite for ultrafast and ultrastable sodium ion storage
Sodium transition metal oxides with layered structures are attractive cathode materials for sodium-ion batteries due to their large theoretical specific capacities. However, these layered oxides suffer from poor cyclability and low rate performance because of structural instability and sluggish elec...
Autores principales: | , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6269426/ https://www.ncbi.nlm.nih.gov/pubmed/30504861 http://dx.doi.org/10.1038/s41467-018-07595-y |
_version_ | 1783376467382501376 |
---|---|
author | Xia, Hui Zhu, Xiaohui Liu, Jizi Liu, Qi Lan, Si Zhang, Qinghua Liu, Xinyu Seo, Joon Kyo Chen, Tingting Gu, Lin Meng, Ying Shirley |
author_facet | Xia, Hui Zhu, Xiaohui Liu, Jizi Liu, Qi Lan, Si Zhang, Qinghua Liu, Xinyu Seo, Joon Kyo Chen, Tingting Gu, Lin Meng, Ying Shirley |
author_sort | Xia, Hui |
collection | PubMed |
description | Sodium transition metal oxides with layered structures are attractive cathode materials for sodium-ion batteries due to their large theoretical specific capacities. However, these layered oxides suffer from poor cyclability and low rate performance because of structural instability and sluggish electrode kinetics. In the present work, we show the sodiation reaction of Mn(3)O(4) to yield crystal water free NaMnO(2−y−δ)(OH)(2y), a monoclinic polymorph of sodium birnessite bearing Na/Mn(OH)(8) hexahedra and Na/MnO(6) octahedra. With the new polymorph, NaMnO(2−y−δ)(OH)(2y) exhibits an enlarged interlayer distance of about 7 Å, which is in favor of fast sodium ion migration and good structural stability. In combination of the favorable nanosheet morphology, NaMn(2−y−δ)(OH)(2y) cathode delivers large specific capacity up to 211.9 mAh g(–1), excellent cycle performance (94.6% capacity retention after 1000 cycles), and outstanding rate capability (156.0 mAh g(–1) at 50 C). This study demonstrates an effective approach in tailoring the structural and electrochemical properties of birnessite towards superior cathode performance in sodium-ion batteries. |
format | Online Article Text |
id | pubmed-6269426 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2018 |
publisher | Nature Publishing Group UK |
record_format | MEDLINE/PubMed |
spelling | pubmed-62694262018-12-03 A monoclinic polymorph of sodium birnessite for ultrafast and ultrastable sodium ion storage Xia, Hui Zhu, Xiaohui Liu, Jizi Liu, Qi Lan, Si Zhang, Qinghua Liu, Xinyu Seo, Joon Kyo Chen, Tingting Gu, Lin Meng, Ying Shirley Nat Commun Article Sodium transition metal oxides with layered structures are attractive cathode materials for sodium-ion batteries due to their large theoretical specific capacities. However, these layered oxides suffer from poor cyclability and low rate performance because of structural instability and sluggish electrode kinetics. In the present work, we show the sodiation reaction of Mn(3)O(4) to yield crystal water free NaMnO(2−y−δ)(OH)(2y), a monoclinic polymorph of sodium birnessite bearing Na/Mn(OH)(8) hexahedra and Na/MnO(6) octahedra. With the new polymorph, NaMnO(2−y−δ)(OH)(2y) exhibits an enlarged interlayer distance of about 7 Å, which is in favor of fast sodium ion migration and good structural stability. In combination of the favorable nanosheet morphology, NaMn(2−y−δ)(OH)(2y) cathode delivers large specific capacity up to 211.9 mAh g(–1), excellent cycle performance (94.6% capacity retention after 1000 cycles), and outstanding rate capability (156.0 mAh g(–1) at 50 C). This study demonstrates an effective approach in tailoring the structural and electrochemical properties of birnessite towards superior cathode performance in sodium-ion batteries. Nature Publishing Group UK 2018-11-30 /pmc/articles/PMC6269426/ /pubmed/30504861 http://dx.doi.org/10.1038/s41467-018-07595-y Text en © The Author(s) 2018 Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/. |
spellingShingle | Article Xia, Hui Zhu, Xiaohui Liu, Jizi Liu, Qi Lan, Si Zhang, Qinghua Liu, Xinyu Seo, Joon Kyo Chen, Tingting Gu, Lin Meng, Ying Shirley A monoclinic polymorph of sodium birnessite for ultrafast and ultrastable sodium ion storage |
title | A monoclinic polymorph of sodium birnessite for ultrafast and ultrastable sodium ion storage |
title_full | A monoclinic polymorph of sodium birnessite for ultrafast and ultrastable sodium ion storage |
title_fullStr | A monoclinic polymorph of sodium birnessite for ultrafast and ultrastable sodium ion storage |
title_full_unstemmed | A monoclinic polymorph of sodium birnessite for ultrafast and ultrastable sodium ion storage |
title_short | A monoclinic polymorph of sodium birnessite for ultrafast and ultrastable sodium ion storage |
title_sort | monoclinic polymorph of sodium birnessite for ultrafast and ultrastable sodium ion storage |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6269426/ https://www.ncbi.nlm.nih.gov/pubmed/30504861 http://dx.doi.org/10.1038/s41467-018-07595-y |
work_keys_str_mv | AT xiahui amonoclinicpolymorphofsodiumbirnessiteforultrafastandultrastablesodiumionstorage AT zhuxiaohui amonoclinicpolymorphofsodiumbirnessiteforultrafastandultrastablesodiumionstorage AT liujizi amonoclinicpolymorphofsodiumbirnessiteforultrafastandultrastablesodiumionstorage AT liuqi amonoclinicpolymorphofsodiumbirnessiteforultrafastandultrastablesodiumionstorage AT lansi amonoclinicpolymorphofsodiumbirnessiteforultrafastandultrastablesodiumionstorage AT zhangqinghua amonoclinicpolymorphofsodiumbirnessiteforultrafastandultrastablesodiumionstorage AT liuxinyu amonoclinicpolymorphofsodiumbirnessiteforultrafastandultrastablesodiumionstorage AT seojoonkyo amonoclinicpolymorphofsodiumbirnessiteforultrafastandultrastablesodiumionstorage AT chentingting amonoclinicpolymorphofsodiumbirnessiteforultrafastandultrastablesodiumionstorage AT gulin amonoclinicpolymorphofsodiumbirnessiteforultrafastandultrastablesodiumionstorage AT mengyingshirley amonoclinicpolymorphofsodiumbirnessiteforultrafastandultrastablesodiumionstorage AT xiahui monoclinicpolymorphofsodiumbirnessiteforultrafastandultrastablesodiumionstorage AT zhuxiaohui monoclinicpolymorphofsodiumbirnessiteforultrafastandultrastablesodiumionstorage AT liujizi monoclinicpolymorphofsodiumbirnessiteforultrafastandultrastablesodiumionstorage AT liuqi monoclinicpolymorphofsodiumbirnessiteforultrafastandultrastablesodiumionstorage AT lansi monoclinicpolymorphofsodiumbirnessiteforultrafastandultrastablesodiumionstorage AT zhangqinghua monoclinicpolymorphofsodiumbirnessiteforultrafastandultrastablesodiumionstorage AT liuxinyu monoclinicpolymorphofsodiumbirnessiteforultrafastandultrastablesodiumionstorage AT seojoonkyo monoclinicpolymorphofsodiumbirnessiteforultrafastandultrastablesodiumionstorage AT chentingting monoclinicpolymorphofsodiumbirnessiteforultrafastandultrastablesodiumionstorage AT gulin monoclinicpolymorphofsodiumbirnessiteforultrafastandultrastablesodiumionstorage AT mengyingshirley monoclinicpolymorphofsodiumbirnessiteforultrafastandultrastablesodiumionstorage |