Cargando…
Incorporating Breast Anatomy in Computational Phenotyping of Mammographic Parenchymal Patterns for Breast Cancer Risk Estimation
We retrospectively analyzed negative screening digital mammograms from 115 women who developed unilateral breast cancer at least one year later and 460 matched controls. Texture features were estimated in multiple breast regions defined by an anatomically-oriented polar grid, and were weighted by th...
Autores principales: | Gastounioti, Aimilia, Hsieh, Meng-Kang, Cohen, Eric, Pantalone, Lauren, Conant, Emily F., Kontos, Despina |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6269457/ https://www.ncbi.nlm.nih.gov/pubmed/30504841 http://dx.doi.org/10.1038/s41598-018-35929-9 |
Ejemplares similares
-
Beyond breast density: a review on the advancing role of parenchymal texture analysis in breast cancer risk assessment
por: Gastounioti, Aimilia, et al.
Publicado: (2016) -
Artificial intelligence in mammographic phenotyping of breast cancer risk: a narrative review
por: Gastounioti, Aimilia, et al.
Publicado: (2022) -
Incorporating Robustness to Imaging Physics into Radiomic Feature Selection for Breast Cancer Risk Estimation
por: Acciavatti, Raymond J., et al.
Publicado: (2021) -
External Validation of a Mammography-Derived AI-Based Risk Model in a U.S. Breast Cancer Screening Cohort of White and Black Women
por: Gastounioti, Aimilia, et al.
Publicado: (2022) -
Bias and the association of mammographic parenchymal patterns with breast cancer.
por: Boyd, N. F., et al.
Publicado: (1982)