Cargando…
Targeted-pig trial on safety and immunogenicity of serum-derived extracellular vesicles enriched fractions obtained from Porcine Respiratory and Reproductive virus infections
The Porcine Reproductive and Respiratory Syndrome Virus (PRRSV) is the etiological agent of one of the most important swine diseases with a significant economic burden worldwide. Unfortunately, available vaccines are partially effective highlighting the need of novel approaches. Previously, antigeni...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6269534/ https://www.ncbi.nlm.nih.gov/pubmed/30504834 http://dx.doi.org/10.1038/s41598-018-36141-5 |
Sumario: | The Porcine Reproductive and Respiratory Syndrome Virus (PRRSV) is the etiological agent of one of the most important swine diseases with a significant economic burden worldwide. Unfortunately, available vaccines are partially effective highlighting the need of novel approaches. Previously, antigenic viral proteins were described in serum-derived extracellular vesicles (EVs) from pigs previously infected with PRRSV. Here, a targeted-pig trial was designed to determine the safety and immunogenicity of such extracellular vesicles enriched fractions. Our results showed that immunizations with EV-enriched fractions from convalescence animals in combination with montanide is safe and free of virus as immunizations with up-to two milligrams of EV-enriched fractions did not induce clinical symptoms, adverse effects and detectable viral replication. In addition, this vaccine formulation was able to elicit specific humoral IgG immune response in vaccinated animals, albeit variably. Noticeably, sera from vaccinated animals was diagnosed negative when tested for PRRSV using a commercial ELISA test; thus, indicating that this new approach differentiates vaccinated from infected animals. Lastly, after priming animals with EV-enriched fractions from sera of convalescence animals and boosting them with synthetic viral peptides identified by mass spectrometry, a distinctive high and specific IFN-γ response was elicited. Altogether, our data strongly suggest the use of serum EV-enriched fractions as a novel vaccine strategy against PRRSV. |
---|