Cargando…

The Effect of PAMAM Dendrimers on the Antibacterial Activity of Antibiotics with Different Water Solubility

Erythromycin (EM) and tobramycin (TOB) are well-known and widely used antibiotics, belonging to different therapeutic groups: macrolide and aminoglycoside, respectively. Moreover, they possess different solubility: EM is slightly soluble and TOB is freely soluble in water. It was previously demonstr...

Descripción completa

Detalles Bibliográficos
Autores principales: Winnicka, Katarzyna, Wroblewska, Magdalena, Wieczorek, Piotr, Sacha, Pawel Tomasz, Tryniszewska, Elzbieta Anna
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2013
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6269725/
https://www.ncbi.nlm.nih.gov/pubmed/23881050
http://dx.doi.org/10.3390/molecules18078607
Descripción
Sumario:Erythromycin (EM) and tobramycin (TOB) are well-known and widely used antibiotics, belonging to different therapeutic groups: macrolide and aminoglycoside, respectively. Moreover, they possess different solubility: EM is slightly soluble and TOB is freely soluble in water. It was previously demonstrated that PAMAM dendrimers enhanced the pharmacological activity of antifungal drugs by increasing their solubility. Therefore, it appears interesting to investigate the effect of PAMAM-NH(2) and PAMAM-OH dendrimers generation 2 (G2) and generation 3 (G3) on the antibacterial activity of antibiotics with different water solubility. In this study it was shown that the aqueous solubility of EM was significantly increased by PAMAM dendrimers (PAMAM-NH(2) and PAMAM-OH caused about 8- and 7- fold solubility increases, respectively). However, it was indicated that despite the increase in the solubility, there was only slight influence on the antibacterial activity of EM (2- and 4- fold decreases in the MBC values of EM in the presence of PAMAM-OH G3 and PAMAM-NH(2) G2 or G3 for strains of Staphylococcus aureus were noted, respectively). It was also found that there was no influence of PAMAM on the antibacterial activity of hydrophilic TOB.