Cargando…
Iodine-Catalyzed Prins Cyclization of Homoallylic Alcohols and Aldehydes
The iodine-catalyzed Prins cyclization of homoallylic alcohols and aldehydes was investigated under metal-free conditions and without additives. Anhydrous conditions and inert atmosphere are not required. The reaction of 2-(3,4-dihydronaphthalen-1-yl)propan-1-ol and 21 aldehydes (aliphatic and aroma...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2013
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6269844/ https://www.ncbi.nlm.nih.gov/pubmed/24025458 http://dx.doi.org/10.3390/molecules180911100 |
Sumario: | The iodine-catalyzed Prins cyclization of homoallylic alcohols and aldehydes was investigated under metal-free conditions and without additives. Anhydrous conditions and inert atmosphere are not required. The reaction of 2-(3,4-dihydronaphthalen-1-yl)propan-1-ol and 21 aldehydes (aliphatic and aromatic) in CH(2)Cl(2) in the presence of 5 mol % of iodine gave 1,4,5,6-tetrahydro-2H-benzo[f]isochromenes in 54%–86% yield. Under similar conditions, the Prins cyclization of six alcohols containing an endocyclic double bond (primary, secondary, or tertiary) led to dihydropyrans in 52%–91% yield. The acyclic homoallylic alcohols gave 4-iodo-tetrahydropyran in 29%–41% yield in the presence of 50 mol % of iodine. This type of substrate is the main limitation of the methodology. The relative configuration of the products was assigned by NMR and X-ray analysis. The mechanism and the ratio of the products are discussed, based on DFT calculations. |
---|