Cargando…

The Janus Face of PAMAM Dendrimers Used to Potentially Cure Nonenzymatic Modifications of Biomacromolecules in Metabolic Disorders—A Critical Review of the Pros and Cons

Diabetes mellitus, which is characterised by high blood glucose levels and the burden of various macrovascular and microvascular complications, is a cause of much human suffering across the globe. While the use of exogenous insulin and other medications can control and sometimes prevent various diab...

Descripción completa

Detalles Bibliográficos
Autores principales: Labieniec-Watala, Magdalena, Karolczak, Kamil, Siewiera, Karolina, Watala, Cezary
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2013
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6269987/
https://www.ncbi.nlm.nih.gov/pubmed/24213655
http://dx.doi.org/10.3390/molecules181113769
Descripción
Sumario:Diabetes mellitus, which is characterised by high blood glucose levels and the burden of various macrovascular and microvascular complications, is a cause of much human suffering across the globe. While the use of exogenous insulin and other medications can control and sometimes prevent various diabetes-associated sequelae, numerous diabetic complications are still commonly encountered in diabetic patients. Therefore, there is a strong need for safe and effective antihyperglycaemic agents that provide an alternative or compounding option for the treatment of diabetes. In recent years, amino-terminated poly(amido)amine (PAMAM) dendrimers (G2, G3 and G4) have attracted attention due to their protective value as anti-glycation and anti-carbonylation agents that can be used to limit the nonenzymatic modifications of biomacromolecules. The focus of this review is to present a detailed survey of our own data, as well as of the available literature regarding the toxicity, pharmacological properties and overall usefulness of PAMAM dendrimers. This presentation pays particular and primary attention to their therapeutic use in poorly controlled diabetes and its complications, but also in other conditions, such as Alzheimer’s disease, in which such nonenzymatic modifications may underlie the pathophysiological mechanisms. The impact of dendrimer administration on the overall survival of diabetic animals and on glycosylation, glycoxidation, the brain-blood barrier and cellular bioenergetics are demonstrated. Finally, we critically discuss the potential advantages and disadvantages accompanying the use of PAMAM dendrimers in the treatment of metabolic impairments that occur under conditions of chronic hyperglycaemia.