Cargando…

Production of Flavours and Fragrances via Bioreduction of (4R)-(-)-Carvone and (1R)-(-)-Myrtenal by Non-Conventional Yeast Whole-Cells

As part of a program aiming at the selection of yeast strains which might be of interest as sources of natural flavours and fragrances, the bioreduction of (4R)-(−)-carvone and (1R)-(−)-myrtenal by whole-cells of non-conventional yeasts (NCYs) belonging to the genera Candida, Cryptococcus, Debaryomy...

Descripción completa

Detalles Bibliográficos
Autores principales: Goretti, Marta, Turchetti, Benedetta, Cramarossa, Maria Rita, Forti, Luca, Buzzini, Pietro
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2013
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6270020/
https://www.ncbi.nlm.nih.gov/pubmed/23681058
http://dx.doi.org/10.3390/molecules18055736
Descripción
Sumario:As part of a program aiming at the selection of yeast strains which might be of interest as sources of natural flavours and fragrances, the bioreduction of (4R)-(−)-carvone and (1R)-(−)-myrtenal by whole-cells of non-conventional yeasts (NCYs) belonging to the genera Candida, Cryptococcus, Debaryomyces, Hanseniaspora, Kazachstania, Kluyveromyces, Lindnera, Nakaseomyces, Vanderwaltozyma and Wickerhamomyces was studied. Volatiles produced were sampled by means of headspace solid-phase microextraction (SPME) and the compounds were analysed and identified by gas chromatography–mass spectroscopy (GC-MS). Yields (expressed as % of biotransformation) varied in dependence of the strain. The reduction of both (4R)-(−)-carvone and (1R)-(−)-myrtenal were catalyzed by some ene-reductases (ERs) and/or carbonyl reductases (CRs), which determined the formation of (1R,4R)-dihydrocarvone and (1R)-myrtenol respectively, as main flavouring products. The potential of NCYs as novel whole-cell biocatalysts for selective biotransformation of electron-poor alkenes for producing flavours and fragrances of industrial interest is discussed.