Cargando…
Baeyer-Villiger Oxidation of Some C(19) Steroids by Penicillium lanosocoeruleum
The biotransformation of androsterone (1), epiandrosterone (2), androstanedione (3) and DHEA (dehydroepiandrosterone) (4) by Penicillium lanosocoeruleum—a fungal species not used in biotransformations so far—were described. All the substrates were converted in high yield (70%–99%) into d ring δ-lact...
Autor principal: | |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2013
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6270215/ https://www.ncbi.nlm.nih.gov/pubmed/24213656 http://dx.doi.org/10.3390/molecules181113812 |
_version_ | 1783376646611402752 |
---|---|
author | Świzdor, Alina |
author_facet | Świzdor, Alina |
author_sort | Świzdor, Alina |
collection | PubMed |
description | The biotransformation of androsterone (1), epiandrosterone (2), androstanedione (3) and DHEA (dehydroepiandrosterone) (4) by Penicillium lanosocoeruleum—a fungal species not used in biotransformations so far—were described. All the substrates were converted in high yield (70%–99%) into d ring δ-lactones. The oxidation of 1 produced 3α-hydroxy-17a-oxa-d-homo-5α-androstan-17-one (5). The oxidation of 2 led to 3β-hydroxy-17a-oxa-d-homo-5α-androstan-17-one (6). The biotransformation of 3 resulted in the formation of 3α-hydroxy-17a-oxa-d-homo-5α-androstan-17-one (5) and 17a-oxa-d-homo-5α-androstan-3,17-dione (7). An analysis of the transformation progress of the studied substrates as a function of time indicates that the Baeyer-Villiger monooxygenase of this fungus does not accept the 3β-hydroxy-5-ene functionality of steroids. In this microorganism steroidal 3β-hydroxy-dehydrogenase (3β-HSD) was active, and as a result DHEA (4) was transformed exclusively to testololactone (8). Apart from the observed oxidative transformations, a reductive pathway was revealed with the C-3 ketone being reduced to a C-3α-alcohol. It is demonstrated for the first time that the reduction of the 3-keto group of the steroid nucleus can occur in the presence of a ring-D lactone functionality. |
format | Online Article Text |
id | pubmed-6270215 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2013 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-62702152018-12-20 Baeyer-Villiger Oxidation of Some C(19) Steroids by Penicillium lanosocoeruleum Świzdor, Alina Molecules Article The biotransformation of androsterone (1), epiandrosterone (2), androstanedione (3) and DHEA (dehydroepiandrosterone) (4) by Penicillium lanosocoeruleum—a fungal species not used in biotransformations so far—were described. All the substrates were converted in high yield (70%–99%) into d ring δ-lactones. The oxidation of 1 produced 3α-hydroxy-17a-oxa-d-homo-5α-androstan-17-one (5). The oxidation of 2 led to 3β-hydroxy-17a-oxa-d-homo-5α-androstan-17-one (6). The biotransformation of 3 resulted in the formation of 3α-hydroxy-17a-oxa-d-homo-5α-androstan-17-one (5) and 17a-oxa-d-homo-5α-androstan-3,17-dione (7). An analysis of the transformation progress of the studied substrates as a function of time indicates that the Baeyer-Villiger monooxygenase of this fungus does not accept the 3β-hydroxy-5-ene functionality of steroids. In this microorganism steroidal 3β-hydroxy-dehydrogenase (3β-HSD) was active, and as a result DHEA (4) was transformed exclusively to testololactone (8). Apart from the observed oxidative transformations, a reductive pathway was revealed with the C-3 ketone being reduced to a C-3α-alcohol. It is demonstrated for the first time that the reduction of the 3-keto group of the steroid nucleus can occur in the presence of a ring-D lactone functionality. MDPI 2013-11-07 /pmc/articles/PMC6270215/ /pubmed/24213656 http://dx.doi.org/10.3390/molecules181113812 Text en © 2013 by the authors; licensee MDPI, Basel, Switzerland. http://creativecommons.org/licenses/by/3.0/ This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/). |
spellingShingle | Article Świzdor, Alina Baeyer-Villiger Oxidation of Some C(19) Steroids by Penicillium lanosocoeruleum |
title | Baeyer-Villiger Oxidation of Some C(19) Steroids by Penicillium lanosocoeruleum |
title_full | Baeyer-Villiger Oxidation of Some C(19) Steroids by Penicillium lanosocoeruleum |
title_fullStr | Baeyer-Villiger Oxidation of Some C(19) Steroids by Penicillium lanosocoeruleum |
title_full_unstemmed | Baeyer-Villiger Oxidation of Some C(19) Steroids by Penicillium lanosocoeruleum |
title_short | Baeyer-Villiger Oxidation of Some C(19) Steroids by Penicillium lanosocoeruleum |
title_sort | baeyer-villiger oxidation of some c(19) steroids by penicillium lanosocoeruleum |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6270215/ https://www.ncbi.nlm.nih.gov/pubmed/24213656 http://dx.doi.org/10.3390/molecules181113812 |
work_keys_str_mv | AT swizdoralina baeyervilligeroxidationofsomec19steroidsbypenicilliumlanosocoeruleum |