Cargando…

A pH-Sensitive Peptide-Containing Lasso Molecular Switch

The synthesis of a peptide-containing lasso molecular switch by a self-entanglement strategy is described. The interlocked [1] rotaxane molecular machine consists of a benzometaphenylene[25]crown-8 (BMP25C8) macrocycle surrounding a molecular axle. This molecular axle contains a tripeptidic sequence...

Descripción completa

Detalles Bibliográficos
Autores principales: Clavel, Caroline, Fournel-Marotte, Karine, Coutrot, Frédéric
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2013
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6270336/
https://www.ncbi.nlm.nih.gov/pubmed/24048287
http://dx.doi.org/10.3390/molecules180911553
Descripción
Sumario:The synthesis of a peptide-containing lasso molecular switch by a self-entanglement strategy is described. The interlocked [1] rotaxane molecular machine consists of a benzometaphenylene[25]crown-8 (BMP25C8) macrocycle surrounding a molecular axle. This molecular axle contains a tripeptidic sequence and two molecular stations: a N-benzyltriazolium and a pH-sensitive anilinium station. The tripeptide is located between the macrocycle and the triazolium station, so that its conformation can be tailored depending on the shuttling of the macrocycle from one station to the other. At acidic pH, the macrocycle resides around the anilinium moiety, whereas it shuttles around the triazolium station after deprotonation. This molecular machinery thus forces the lasso to adopt a tightened or a loosened conformation.