Cargando…
Quenching of Tryptophan Fluorescence in the Presence of 2,4-DNP, 2,6-DNP, 2,4-DNA and DNOC and Their Mechanism of Toxicity
Although they are widely used as insecticides, acaricides and fungicides in the agriculture or as raw materials in the dye industry, dinitrophenols (DNPs) are extremely noxious, death cases having been registered. These compounds produce cataracts, lower leucocyte levels, disturb the general metabol...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2013
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6270512/ https://www.ncbi.nlm.nih.gov/pubmed/23429343 http://dx.doi.org/10.3390/molecules18022266 |
_version_ | 1783376716420349952 |
---|---|
author | Huţanu, Cristina-Amalia Dumitraş Pintilie, Marius Zaharia and Olga |
author_facet | Huţanu, Cristina-Amalia Dumitraş Pintilie, Marius Zaharia and Olga |
author_sort | Huţanu, Cristina-Amalia Dumitraş |
collection | PubMed |
description | Although they are widely used as insecticides, acaricides and fungicides in the agriculture or as raw materials in the dye industry, dinitrophenols (DNPs) are extremely noxious, death cases having been registered. These compounds produce cataracts, lower leucocyte levels, disturb the general metabolism and can cause cancer. It is also assumed that DNPs hinder the proton translocation through the mitochondrial inner membrane and therefore inhibit oxidative phosphorylation. Their fluorescence quenching properties can help understand and explain their toxicity. Fluorescence quenching of tryptophan was tested using different dinitrophenols such as 2,4-dinitrophenol (2,4-DNP), 4,6-dinitro-orthocresol (DNOC), 2-[(2,4-dinitrophenyl)amino]acetic acid (GlyDNP), 2-(1-methyl-heptyl)-4.6-dinitrophenyl crotonate (Karathan), 2-amino-5-[(1-((carboxymethyl)amino)-3-((2,4-dinitrophenyl)thio)-1-oxopropan-2-yl)amino]-5-oxopentanoic acid (SDN GSH), 2,4-dinitroanisole (2,4-DNA) and 2,4-dinitrobenzoic acid (2,4-DNB). 2,4-DNP and DNOC showed the highest tryptophan fluorescence quenching constant values, these being also the most toxic compounds. The electronic chemical potential value of the most stable complex of 2,4-DNP-with tryptophan is higher than the values of the electronic chemical potentials of complexes corresponding to the derivatives. |
format | Online Article Text |
id | pubmed-6270512 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2013 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-62705122018-12-14 Quenching of Tryptophan Fluorescence in the Presence of 2,4-DNP, 2,6-DNP, 2,4-DNA and DNOC and Their Mechanism of Toxicity Huţanu, Cristina-Amalia Dumitraş Pintilie, Marius Zaharia and Olga Molecules Article Although they are widely used as insecticides, acaricides and fungicides in the agriculture or as raw materials in the dye industry, dinitrophenols (DNPs) are extremely noxious, death cases having been registered. These compounds produce cataracts, lower leucocyte levels, disturb the general metabolism and can cause cancer. It is also assumed that DNPs hinder the proton translocation through the mitochondrial inner membrane and therefore inhibit oxidative phosphorylation. Their fluorescence quenching properties can help understand and explain their toxicity. Fluorescence quenching of tryptophan was tested using different dinitrophenols such as 2,4-dinitrophenol (2,4-DNP), 4,6-dinitro-orthocresol (DNOC), 2-[(2,4-dinitrophenyl)amino]acetic acid (GlyDNP), 2-(1-methyl-heptyl)-4.6-dinitrophenyl crotonate (Karathan), 2-amino-5-[(1-((carboxymethyl)amino)-3-((2,4-dinitrophenyl)thio)-1-oxopropan-2-yl)amino]-5-oxopentanoic acid (SDN GSH), 2,4-dinitroanisole (2,4-DNA) and 2,4-dinitrobenzoic acid (2,4-DNB). 2,4-DNP and DNOC showed the highest tryptophan fluorescence quenching constant values, these being also the most toxic compounds. The electronic chemical potential value of the most stable complex of 2,4-DNP-with tryptophan is higher than the values of the electronic chemical potentials of complexes corresponding to the derivatives. MDPI 2013-02-18 /pmc/articles/PMC6270512/ /pubmed/23429343 http://dx.doi.org/10.3390/molecules18022266 Text en © 2013 by the authors; licensee MDPI, Basel, Switzerland. http://creativecommons.org/licenses/by/3.0/ This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/). |
spellingShingle | Article Huţanu, Cristina-Amalia Dumitraş Pintilie, Marius Zaharia and Olga Quenching of Tryptophan Fluorescence in the Presence of 2,4-DNP, 2,6-DNP, 2,4-DNA and DNOC and Their Mechanism of Toxicity |
title | Quenching of Tryptophan Fluorescence in the Presence of 2,4-DNP, 2,6-DNP, 2,4-DNA and DNOC and Their Mechanism of Toxicity |
title_full | Quenching of Tryptophan Fluorescence in the Presence of 2,4-DNP, 2,6-DNP, 2,4-DNA and DNOC and Their Mechanism of Toxicity |
title_fullStr | Quenching of Tryptophan Fluorescence in the Presence of 2,4-DNP, 2,6-DNP, 2,4-DNA and DNOC and Their Mechanism of Toxicity |
title_full_unstemmed | Quenching of Tryptophan Fluorescence in the Presence of 2,4-DNP, 2,6-DNP, 2,4-DNA and DNOC and Their Mechanism of Toxicity |
title_short | Quenching of Tryptophan Fluorescence in the Presence of 2,4-DNP, 2,6-DNP, 2,4-DNA and DNOC and Their Mechanism of Toxicity |
title_sort | quenching of tryptophan fluorescence in the presence of 2,4-dnp, 2,6-dnp, 2,4-dna and dnoc and their mechanism of toxicity |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6270512/ https://www.ncbi.nlm.nih.gov/pubmed/23429343 http://dx.doi.org/10.3390/molecules18022266 |
work_keys_str_mv | AT hutanucristinaamaliadumitras quenchingoftryptophanfluorescenceinthepresenceof24dnp26dnp24dnaanddnocandtheirmechanismoftoxicity AT pintiliemariuszahariaandolga quenchingoftryptophanfluorescenceinthepresenceof24dnp26dnp24dnaanddnocandtheirmechanismoftoxicity |