Cargando…
Oligomerization of 10,16-Dihydroxyhexadecanoic Acid and Methyl 10,16-Dihydroxyhexadecanoate Catalyzed by Lipases
The main monomer of tomato cuticle, 10,16-dihydroxyhexadecanoic acid (10,16-DHPA) and its methyl ester derivative (methyl-10,16-dihydroxyhexadecanote; methyl-10,16-DHHD), were used to study their oligomerization reactions catalyzed by five lipases: Candida antarctica lipase B (CAL-B), Rhizomucor mie...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2013
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6270567/ https://www.ncbi.nlm.nih.gov/pubmed/23921794 http://dx.doi.org/10.3390/molecules18089317 |
Sumario: | The main monomer of tomato cuticle, 10,16-dihydroxyhexadecanoic acid (10,16-DHPA) and its methyl ester derivative (methyl-10,16-dihydroxyhexadecanote; methyl-10,16-DHHD), were used to study their oligomerization reactions catalyzed by five lipases: Candida antarctica lipase B (CAL-B), Rhizomucor miehei lipase (RM), Thermomyces lanuginosus lipase (TL), Pseudomonas cepacia lipase (PCL) and porcine pancreatic lipase (PPL). For 10,16-DHPA, optimum yields were obtained at 60 °C using toluene and 2-methyl-2-butanol (2M2B) as solvent, while for methyl-10,16-DHHD the bests yields were obtained in toluene and acetonitrile. Both reactions leaded to linear polyesters according to the NMR and FT-IR analysis, and there was no data indicating the presence of branched polymers. Using optimized conditions, poly(10,16-DHPA) and poly(methyl-10,16-DHHD) with Mw = 814 and Mn = 1,206 Da, and Mw = 982 and Mn = 860 Da, respectively, were formed according to their MALDI-TOF MS and ESI-MS data. The self-assembly of the polyesters obtained were analyzed by AFM. |
---|