Cargando…
Vapour Phase Hydrogenation of Phenol over Rhodium on SBA-15 and SBA-16
In the present work, mesoporous SBA-15 and SBA-16 were synthesised using classical methods, and their physicochemical properties were investigated by X-ray diffraction (XRD), FTIR, TEM and N(2) adsorption–desorption. Rhodium (Rh, 1 wt %) was loaded on the mesoporous SBA-15 and SBA-16 by an impregnat...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2014
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6270859/ https://www.ncbi.nlm.nih.gov/pubmed/25514052 http://dx.doi.org/10.3390/molecules191220594 |
Sumario: | In the present work, mesoporous SBA-15 and SBA-16 were synthesised using classical methods, and their physicochemical properties were investigated by X-ray diffraction (XRD), FTIR, TEM and N(2) adsorption–desorption. Rhodium (Rh, 1 wt %) was loaded on the mesoporous SBA-15 and SBA-16 by an impregnation method. The Rh surface coverage, dispersion and crystallite size were determined by room temperature H(2) chemisorption on reduced samples. The catalytic activity of Rh supported on mesoporous SBA-15 and SBA-16 was evaluated for the first time in the hydrogenation of phenol in vapour phase in a temperature range between 130 and 270 °C at atmospheric pressure. The reaction over Rh/SBA-15 at 180 °C produced cyclohexanone as the major product (about 60%) along with lower amounts of cyclohexanol (about 35%) and cyclohexane (about 15%). The influences of temperature, H(2)/phenol ratio, contact time and the nature of the solvent on the catalytic performance were systematically investigated. The Rh/SBA-16 system offered lower phenol conversion compared to Rh/SBA-15, but both have a very high selectivity for cyclohexanone (above 60%). |
---|