Cargando…
Proton Adsorption Selectivity of Zeolites in Aqueous Media: Effect of Si/Al Ratio of Zeolites
In addition to their well-known uses as catalysts, zeolites are utilized to adsorb and remove various cations from aqueous system. The adsorption of the cations is ascribed to the negative charge of zeolites derived from isomorphous substitution of Si by Al. The amount of Na(+) adsorption on 4A, X,...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2014
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6271039/ https://www.ncbi.nlm.nih.gov/pubmed/25493632 http://dx.doi.org/10.3390/molecules191220468 |
_version_ | 1783376836748640256 |
---|---|
author | Munthali, Moses Wazingwa Elsheikh, Mohammed Abdalla Johan, Erni Matsue, Naoto |
author_facet | Munthali, Moses Wazingwa Elsheikh, Mohammed Abdalla Johan, Erni Matsue, Naoto |
author_sort | Munthali, Moses Wazingwa |
collection | PubMed |
description | In addition to their well-known uses as catalysts, zeolites are utilized to adsorb and remove various cations from aqueous system. The adsorption of the cations is ascribed to the negative charge of zeolites derived from isomorphous substitution of Si by Al. The amount of Na(+) adsorption on 4A, X, Y, Na-P1 and mordenite type zeolites were determined in aqueous media, in a two-cation (Na(+) and H(+)) system. Although each zeolite has a constant amount of negative charge, the amount of Na(+) adsorption of each zeolite decreased drastically at low pH−pNa values, where pH−pNa is equal to log{(Na(+))/(H(+))}. By using the plot of the amount of Na(+) adsorption versus pH−pNa, an index of the H(+) selectivity, which is similar to the pKa of acids, of each zeolite was estimated, and the index tended to increase with decreasing Si/Al ratio of zeolites. These indicate that zeolites with lower Si/Al and higher negative charge density have higher H(+) adsorption selectivity, and in fact, such a zeolite species (4A and X) adsorbed considerable amount of H(+) even at weakly alkaline pH region. The adsorption of H(+) results in the decrease of cation adsorption ability, and may lead to the dissolution of zeolites in aqueous media. |
format | Online Article Text |
id | pubmed-6271039 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2014 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-62710392018-12-28 Proton Adsorption Selectivity of Zeolites in Aqueous Media: Effect of Si/Al Ratio of Zeolites Munthali, Moses Wazingwa Elsheikh, Mohammed Abdalla Johan, Erni Matsue, Naoto Molecules Article In addition to their well-known uses as catalysts, zeolites are utilized to adsorb and remove various cations from aqueous system. The adsorption of the cations is ascribed to the negative charge of zeolites derived from isomorphous substitution of Si by Al. The amount of Na(+) adsorption on 4A, X, Y, Na-P1 and mordenite type zeolites were determined in aqueous media, in a two-cation (Na(+) and H(+)) system. Although each zeolite has a constant amount of negative charge, the amount of Na(+) adsorption of each zeolite decreased drastically at low pH−pNa values, where pH−pNa is equal to log{(Na(+))/(H(+))}. By using the plot of the amount of Na(+) adsorption versus pH−pNa, an index of the H(+) selectivity, which is similar to the pKa of acids, of each zeolite was estimated, and the index tended to increase with decreasing Si/Al ratio of zeolites. These indicate that zeolites with lower Si/Al and higher negative charge density have higher H(+) adsorption selectivity, and in fact, such a zeolite species (4A and X) adsorbed considerable amount of H(+) even at weakly alkaline pH region. The adsorption of H(+) results in the decrease of cation adsorption ability, and may lead to the dissolution of zeolites in aqueous media. MDPI 2014-12-08 /pmc/articles/PMC6271039/ /pubmed/25493632 http://dx.doi.org/10.3390/molecules191220468 Text en © 2014 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Munthali, Moses Wazingwa Elsheikh, Mohammed Abdalla Johan, Erni Matsue, Naoto Proton Adsorption Selectivity of Zeolites in Aqueous Media: Effect of Si/Al Ratio of Zeolites |
title | Proton Adsorption Selectivity of Zeolites in Aqueous Media: Effect of Si/Al Ratio of Zeolites |
title_full | Proton Adsorption Selectivity of Zeolites in Aqueous Media: Effect of Si/Al Ratio of Zeolites |
title_fullStr | Proton Adsorption Selectivity of Zeolites in Aqueous Media: Effect of Si/Al Ratio of Zeolites |
title_full_unstemmed | Proton Adsorption Selectivity of Zeolites in Aqueous Media: Effect of Si/Al Ratio of Zeolites |
title_short | Proton Adsorption Selectivity of Zeolites in Aqueous Media: Effect of Si/Al Ratio of Zeolites |
title_sort | proton adsorption selectivity of zeolites in aqueous media: effect of si/al ratio of zeolites |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6271039/ https://www.ncbi.nlm.nih.gov/pubmed/25493632 http://dx.doi.org/10.3390/molecules191220468 |
work_keys_str_mv | AT munthalimoseswazingwa protonadsorptionselectivityofzeolitesinaqueousmediaeffectofsialratioofzeolites AT elsheikhmohammedabdalla protonadsorptionselectivityofzeolitesinaqueousmediaeffectofsialratioofzeolites AT johanerni protonadsorptionselectivityofzeolitesinaqueousmediaeffectofsialratioofzeolites AT matsuenaoto protonadsorptionselectivityofzeolitesinaqueousmediaeffectofsialratioofzeolites |