Cargando…

Effects of Egg Yolk-Derived Peptide on Osteogenic Gene Expression and MAPK Activation

The present study investigated the effects of egg yolk-derived peptide (YPEP) on osteogenic activities and MAPK-regulation of osteogenic gene expressions. The effects of YPEP on cell proliferation, alkaline phosphatase activity, collagen synthesis, and mineralization were measured in human osteoblas...

Descripción completa

Detalles Bibliográficos
Autores principales: Kim, Hye Kyung, Kim, Myung-Gyou, Leem, Kang-Hyun
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2014
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6271094/
https://www.ncbi.nlm.nih.gov/pubmed/25157462
http://dx.doi.org/10.3390/molecules190912909
_version_ 1783376849398661120
author Kim, Hye Kyung
Kim, Myung-Gyou
Leem, Kang-Hyun
author_facet Kim, Hye Kyung
Kim, Myung-Gyou
Leem, Kang-Hyun
author_sort Kim, Hye Kyung
collection PubMed
description The present study investigated the effects of egg yolk-derived peptide (YPEP) on osteogenic activities and MAPK-regulation of osteogenic gene expressions. The effects of YPEP on cell proliferation, alkaline phosphatase activity, collagen synthesis, and mineralization were measured in human osteoblastic MG-63 cells. Activation of MAPKs and downstream transcription factors such as extracellular-signal-regulated kinase 1/2 (ERK1/2), c-Jun N-terminal kinase 1/2 (JNK1/2), p38, ELK1, and cJUN were examined using western blot analysis. YPEP dose-dependently increased MG-63 cell proliferation, ALP activity, collagen synthesis, and calcium deposition. YPEP activated ERK1/2, p38, and ELK1 phosphorylation whereas JNK and cJUN were not affected by YPEP. The COL1A1 (collagen, type I, alpha 1), ALPL (alkaline phosphatase), and SPP1 (secreted phosphoprotein 1, osteopontin) gene expressions were increased while BGLAP (osteocalcin) was not affected by YPEP. The ERK1/2 inhibitor (PD98509) blocked the YPEP-induced COL1A1 and ALPL gene expressions as well as ELK1 phosphorylation. The p38 inhibitor (SB203580) blocked YPEP-induced COL1A1 and ALPL gene expressions. SPP1 gene expression was not affected by these MAPK inhibitors. In conclusion, YPEP treatment stimulates the osteogenic differentiation via the MAPK/ELK1 signaling pathway. These results could provide a mechanistic explanation for the bone-strengthening effects of YPEP.
format Online
Article
Text
id pubmed-6271094
institution National Center for Biotechnology Information
language English
publishDate 2014
publisher MDPI
record_format MEDLINE/PubMed
spelling pubmed-62710942018-12-27 Effects of Egg Yolk-Derived Peptide on Osteogenic Gene Expression and MAPK Activation Kim, Hye Kyung Kim, Myung-Gyou Leem, Kang-Hyun Molecules Article The present study investigated the effects of egg yolk-derived peptide (YPEP) on osteogenic activities and MAPK-regulation of osteogenic gene expressions. The effects of YPEP on cell proliferation, alkaline phosphatase activity, collagen synthesis, and mineralization were measured in human osteoblastic MG-63 cells. Activation of MAPKs and downstream transcription factors such as extracellular-signal-regulated kinase 1/2 (ERK1/2), c-Jun N-terminal kinase 1/2 (JNK1/2), p38, ELK1, and cJUN were examined using western blot analysis. YPEP dose-dependently increased MG-63 cell proliferation, ALP activity, collagen synthesis, and calcium deposition. YPEP activated ERK1/2, p38, and ELK1 phosphorylation whereas JNK and cJUN were not affected by YPEP. The COL1A1 (collagen, type I, alpha 1), ALPL (alkaline phosphatase), and SPP1 (secreted phosphoprotein 1, osteopontin) gene expressions were increased while BGLAP (osteocalcin) was not affected by YPEP. The ERK1/2 inhibitor (PD98509) blocked the YPEP-induced COL1A1 and ALPL gene expressions as well as ELK1 phosphorylation. The p38 inhibitor (SB203580) blocked YPEP-induced COL1A1 and ALPL gene expressions. SPP1 gene expression was not affected by these MAPK inhibitors. In conclusion, YPEP treatment stimulates the osteogenic differentiation via the MAPK/ELK1 signaling pathway. These results could provide a mechanistic explanation for the bone-strengthening effects of YPEP. MDPI 2014-08-25 /pmc/articles/PMC6271094/ /pubmed/25157462 http://dx.doi.org/10.3390/molecules190912909 Text en © 2014 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).
spellingShingle Article
Kim, Hye Kyung
Kim, Myung-Gyou
Leem, Kang-Hyun
Effects of Egg Yolk-Derived Peptide on Osteogenic Gene Expression and MAPK Activation
title Effects of Egg Yolk-Derived Peptide on Osteogenic Gene Expression and MAPK Activation
title_full Effects of Egg Yolk-Derived Peptide on Osteogenic Gene Expression and MAPK Activation
title_fullStr Effects of Egg Yolk-Derived Peptide on Osteogenic Gene Expression and MAPK Activation
title_full_unstemmed Effects of Egg Yolk-Derived Peptide on Osteogenic Gene Expression and MAPK Activation
title_short Effects of Egg Yolk-Derived Peptide on Osteogenic Gene Expression and MAPK Activation
title_sort effects of egg yolk-derived peptide on osteogenic gene expression and mapk activation
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6271094/
https://www.ncbi.nlm.nih.gov/pubmed/25157462
http://dx.doi.org/10.3390/molecules190912909
work_keys_str_mv AT kimhyekyung effectsofeggyolkderivedpeptideonosteogenicgeneexpressionandmapkactivation
AT kimmyunggyou effectsofeggyolkderivedpeptideonosteogenicgeneexpressionandmapkactivation
AT leemkanghyun effectsofeggyolkderivedpeptideonosteogenicgeneexpressionandmapkactivation