Cargando…

N-Substituted 2-Isonicotinoylhydrazinecarboxamides — New Antimycobacterial Active Molecules

This report presents a new modification of the isoniazid (INH) structure linked with different anilines via a carbonyl group obtained by two synthetic procedures and with N-substituted 5-(pyridine-4-yl)-1,3,4-oxadiazole-2-amines prepared by their cyclisation. All synthesised derivatives were charact...

Descripción completa

Detalles Bibliográficos
Autores principales: Rychtarčíková, Zuzana, Krátký, Martin, Gazvoda, Martin, Komlóová, Markéta, Polanc, Slovenko, Kočevar, Marijan, Stolaříková, Jiřina, Vinšová, Jarmila
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2014
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6271275/
https://www.ncbi.nlm.nih.gov/pubmed/24686575
http://dx.doi.org/10.3390/molecules19043851
Descripción
Sumario:This report presents a new modification of the isoniazid (INH) structure linked with different anilines via a carbonyl group obtained by two synthetic procedures and with N-substituted 5-(pyridine-4-yl)-1,3,4-oxadiazole-2-amines prepared by their cyclisation. All synthesised derivatives were characterised by IR, NMR, MS and elemental analyses and were evaluated in vitro for their antimycobacterial activity against Mycobacterium tuberculosis H(37)Rv, Mycobacterium avium 330/88, Mycobacterium kansasii 235/80 and one clinical isolated strain of M. kansasii 6509/96. 2-Isonicotinoyl-N-(4-octylphenyl)hydrazinecarboxamide displayed an in vitro efficacy comparable to that of INH for M. tuberculosis with minimum inhibitory concentrations (MICs) of 1–2 μM. Among the halogenated derivatives, the best anti-tuberculosis activity was found for 2-isonicotinoyl-N-(2,4,6-trichlorophenyl)hydrazinecarboxamide (MIC = 4 μM). In silico modelling on the enoyl-acyl carrier protein reductase InhA confirmed that longer alkyl substituents are advantageous for the interactions and affinity to InhA. Most of the hydrazinecarboxamides, especially those derived from 4-alkylanilines, exhibited significant activity against INH-resistant nontuberculous mycobacteria.