Cargando…
Tracking Electrons in Biological Macromolecules: From Ensemble to Single Molecule
Nature utilizes oxido-reductases to cater to the energy demands of most biochemical processes in respiratory species. Oxido-reductases are capable of meeting this challenge by utilizing redox active sites, often containing transition metal ions, which facilitate movement and relocation of electrons/...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2014
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6271485/ https://www.ncbi.nlm.nih.gov/pubmed/25102116 http://dx.doi.org/10.3390/molecules190811660 |
Sumario: | Nature utilizes oxido-reductases to cater to the energy demands of most biochemical processes in respiratory species. Oxido-reductases are capable of meeting this challenge by utilizing redox active sites, often containing transition metal ions, which facilitate movement and relocation of electrons/protons to create a potential gradient that is used to energize redox reactions. There has been a consistent struggle by researchers to estimate the electron transfer rate constants in physiologically relevant processes. This review provides a brief background on the measurements of electron transfer rates in biological molecules, in particular Cu-containing enzymes, and highlights the recent advances in monitoring these electron transfer events at the single molecule level or better to say, at the individual event level. |
---|