Cargando…
Ursolic Acid-Enriched Herba Cynomorii Extract Induces Mitochondrial Uncoupling and Glutathione Redox Cycling Through Mitochondrial Reactive Oxygen Species Generation: Protection Against Menadione Cytotoxicity in H9c2 Cells
Herba Cynomorii (Cynomorium songaricum Rupr., Cynomoriaceae) is one of the most commonly used ‘Yang-invigorating’ tonic herbs in Traditional Chinese Medicine (TCM). An earlier study in our laboratory has demonstrated that HCY2, an ursolic acid-enriched fraction derived from Herba Cynomorii, increase...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2014
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6271489/ https://www.ncbi.nlm.nih.gov/pubmed/24473214 http://dx.doi.org/10.3390/molecules19021576 |
_version_ | 1783376939602411520 |
---|---|
author | Chen, Jihang Wong, Hoi Shan Ko, Kam Ming |
author_facet | Chen, Jihang Wong, Hoi Shan Ko, Kam Ming |
author_sort | Chen, Jihang |
collection | PubMed |
description | Herba Cynomorii (Cynomorium songaricum Rupr., Cynomoriaceae) is one of the most commonly used ‘Yang-invigorating’ tonic herbs in Traditional Chinese Medicine (TCM). An earlier study in our laboratory has demonstrated that HCY2, an ursolic acid-enriched fraction derived from Herba Cynomorii, increased mitochondrial ATP generation capacity (ATP-GC) and induced mitochondrial uncoupling as well as a cellular glutathione response, thereby protecting against oxidant injury in H9c2 cells. In this study, we demonstrated that pre-incubation of H9c2 cells with HCY2 increased mitochondrial reactive oxygen species (ROS) generation in these cells, which is likely an event secondary to the stimulation of the mitochondrial electron transport chain. The suppression of mitochondrial ROS by the antioxidant dimethylthiourea abrogated the HCY2-induced enhancement of mitochondrial uncoupling and glutathione reductase (GR)-mediated glutathione redox cycling, and also protected against menadione-induced cytotoxicity. Studies using specific inhibitors of uncoupling protein and GR suggested that the HCY2-induced mitochondrial uncoupling and glutathione redox cycling play a determining role in the cytoprotection against menadione-induced oxidant injury in H9c2 cells. Experimental evidence obtained thus far supports the causal role of HCY2-induced mitochondrial ROS production in eliciting mitochondrial uncoupling and glutathione antioxidant responses, which offer cytoprotection against oxidant injury in H9c2 cells. |
format | Online Article Text |
id | pubmed-6271489 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2014 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-62714892018-12-20 Ursolic Acid-Enriched Herba Cynomorii Extract Induces Mitochondrial Uncoupling and Glutathione Redox Cycling Through Mitochondrial Reactive Oxygen Species Generation: Protection Against Menadione Cytotoxicity in H9c2 Cells Chen, Jihang Wong, Hoi Shan Ko, Kam Ming Molecules Article Herba Cynomorii (Cynomorium songaricum Rupr., Cynomoriaceae) is one of the most commonly used ‘Yang-invigorating’ tonic herbs in Traditional Chinese Medicine (TCM). An earlier study in our laboratory has demonstrated that HCY2, an ursolic acid-enriched fraction derived from Herba Cynomorii, increased mitochondrial ATP generation capacity (ATP-GC) and induced mitochondrial uncoupling as well as a cellular glutathione response, thereby protecting against oxidant injury in H9c2 cells. In this study, we demonstrated that pre-incubation of H9c2 cells with HCY2 increased mitochondrial reactive oxygen species (ROS) generation in these cells, which is likely an event secondary to the stimulation of the mitochondrial electron transport chain. The suppression of mitochondrial ROS by the antioxidant dimethylthiourea abrogated the HCY2-induced enhancement of mitochondrial uncoupling and glutathione reductase (GR)-mediated glutathione redox cycling, and also protected against menadione-induced cytotoxicity. Studies using specific inhibitors of uncoupling protein and GR suggested that the HCY2-induced mitochondrial uncoupling and glutathione redox cycling play a determining role in the cytoprotection against menadione-induced oxidant injury in H9c2 cells. Experimental evidence obtained thus far supports the causal role of HCY2-induced mitochondrial ROS production in eliciting mitochondrial uncoupling and glutathione antioxidant responses, which offer cytoprotection against oxidant injury in H9c2 cells. MDPI 2014-01-27 /pmc/articles/PMC6271489/ /pubmed/24473214 http://dx.doi.org/10.3390/molecules19021576 Text en © 2014 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/). |
spellingShingle | Article Chen, Jihang Wong, Hoi Shan Ko, Kam Ming Ursolic Acid-Enriched Herba Cynomorii Extract Induces Mitochondrial Uncoupling and Glutathione Redox Cycling Through Mitochondrial Reactive Oxygen Species Generation: Protection Against Menadione Cytotoxicity in H9c2 Cells |
title | Ursolic Acid-Enriched Herba Cynomorii Extract Induces Mitochondrial Uncoupling and Glutathione Redox Cycling Through Mitochondrial Reactive Oxygen Species Generation: Protection Against Menadione Cytotoxicity in H9c2 Cells |
title_full | Ursolic Acid-Enriched Herba Cynomorii Extract Induces Mitochondrial Uncoupling and Glutathione Redox Cycling Through Mitochondrial Reactive Oxygen Species Generation: Protection Against Menadione Cytotoxicity in H9c2 Cells |
title_fullStr | Ursolic Acid-Enriched Herba Cynomorii Extract Induces Mitochondrial Uncoupling and Glutathione Redox Cycling Through Mitochondrial Reactive Oxygen Species Generation: Protection Against Menadione Cytotoxicity in H9c2 Cells |
title_full_unstemmed | Ursolic Acid-Enriched Herba Cynomorii Extract Induces Mitochondrial Uncoupling and Glutathione Redox Cycling Through Mitochondrial Reactive Oxygen Species Generation: Protection Against Menadione Cytotoxicity in H9c2 Cells |
title_short | Ursolic Acid-Enriched Herba Cynomorii Extract Induces Mitochondrial Uncoupling and Glutathione Redox Cycling Through Mitochondrial Reactive Oxygen Species Generation: Protection Against Menadione Cytotoxicity in H9c2 Cells |
title_sort | ursolic acid-enriched herba cynomorii extract induces mitochondrial uncoupling and glutathione redox cycling through mitochondrial reactive oxygen species generation: protection against menadione cytotoxicity in h9c2 cells |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6271489/ https://www.ncbi.nlm.nih.gov/pubmed/24473214 http://dx.doi.org/10.3390/molecules19021576 |
work_keys_str_mv | AT chenjihang ursolicacidenrichedherbacynomoriiextractinducesmitochondrialuncouplingandglutathioneredoxcyclingthroughmitochondrialreactiveoxygenspeciesgenerationprotectionagainstmenadionecytotoxicityinh9c2cells AT wonghoishan ursolicacidenrichedherbacynomoriiextractinducesmitochondrialuncouplingandglutathioneredoxcyclingthroughmitochondrialreactiveoxygenspeciesgenerationprotectionagainstmenadionecytotoxicityinh9c2cells AT kokamming ursolicacidenrichedherbacynomoriiextractinducesmitochondrialuncouplingandglutathioneredoxcyclingthroughmitochondrialreactiveoxygenspeciesgenerationprotectionagainstmenadionecytotoxicityinh9c2cells |