Cargando…
In Silico Studies of Quinoxaline-2-Carboxamide 1,4-di-N-Oxide Derivatives as Antimycobacterial Agents
Molecular modelling studies were performed on some previously reported novel quinoxaline-2-carboxamide 1,4-di-N-oxide derivatives (series 1–9). Using the LigandScout program, a pharmacophore model was developed to further optimize the antimycobacterial activity of this series of compounds. Using the...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2014
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6271882/ https://www.ncbi.nlm.nih.gov/pubmed/24566302 http://dx.doi.org/10.3390/molecules19022247 |
Sumario: | Molecular modelling studies were performed on some previously reported novel quinoxaline-2-carboxamide 1,4-di-N-oxide derivatives (series 1–9). Using the LigandScout program, a pharmacophore model was developed to further optimize the antimycobacterial activity of this series of compounds. Using the Dock6 program, docking studies were performed in order to investigate the mode of binding of these compounds. The molecular modeling study allowed us to confirm the preferential binding mode of these quinoxaline-2-carboxamide 1,4-di-N-oxide derivatives inside the active site. The obtained binding mode was as same as that of the novobiocin X-ray structure. |
---|