Cargando…
Low-Quality Structural and Interaction Data Improves Binding Affinity Prediction via Random Forest
Docking scoring functions can be used to predict the strength of protein-ligand binding. It is widely believed that training a scoring function with low-quality data is detrimental for its predictive performance. Nevertheless, there is a surprising lack of systematic validation experiments in suppor...
Autores principales: | Li, Hongjian, Leung, Kwong-Sak, Wong, Man-Hon, Ballester, Pedro J. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2015
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6272292/ https://www.ncbi.nlm.nih.gov/pubmed/26076113 http://dx.doi.org/10.3390/molecules200610947 |
Ejemplares similares
-
Substituting random forest for multiple linear regression improves binding affinity prediction of scoring functions: Cyscore as a case study
por: Li, Hongjian, et al.
Publicado: (2014) -
Correcting the impact of docking pose generation error on binding affinity prediction
por: Li, Hongjian, et al.
Publicado: (2016) -
The Impact of Protein Structure and Sequence Similarity on the Accuracy of Machine-Learning Scoring Functions for Binding Affinity Prediction
por: Li, Hongjian, et al.
Publicado: (2018) -
istar: A Web Platform for Large-Scale Protein-Ligand Docking
por: Li, Hongjian, et al.
Publicado: (2014) -
iview: an interactive WebGL visualizer for protein-ligand complex
por: Li, Hongjian, et al.
Publicado: (2014)