Cargando…
Relationship between High-Performance Liquid Chromatography Fingerprints and Uric Acid-Lowering Activities of Cichorium intybus L.
This study aimed to explore the spectrum-effect relationships between high-performance liquid chromatography fingerprints and the uric acid-lowering activities of chicory. Chemical fingerprints of chicory samples from ten different sources were determined by high-performance liquid chromatography, a...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2015
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6272355/ https://www.ncbi.nlm.nih.gov/pubmed/26007193 http://dx.doi.org/10.3390/molecules20059455 |
Sumario: | This study aimed to explore the spectrum-effect relationships between high-performance liquid chromatography fingerprints and the uric acid-lowering activities of chicory. Chemical fingerprints of chicory samples from ten different sources were determined by high-performance liquid chromatography, and then investigated by similarity analysis and hierarchical clustering analysis. Pharmacodynamics experiments were conducted in animals to obtain the uric acid-lowering activity information of each chicory sample. The spectrum-effect relationships between chemical fingerprints and the uric acid-lowering activities of chicory were established by canonical correlation analysis. The structures of potential effective peaks were identified by liquid chromatography with tandem mass spectrometry. The results showed that a close correlation existed between the spectrum and effect of chicory. Aesculin, chlorogenic acid, chicoric acid, isochlorogenic acid A/B/C and 13,14-seco-stigma5(6),14(15)-diene-3α-ol might be the main effective constituents. This work provides a general model of the combination of high-performance liquid chromatography and uric acid-lowering activities to study the spectrum-effect relationships of chicory, which can be used to discover the principle components responsible for the bioactivity. |
---|