Cargando…

PLS-Prediction and Confirmation of Hydrojuglone Glucoside as the Antitrypanosomal Constituent of Juglans Spp.

Naphthoquinones (NQs) occur naturally in a large variety of plants. Several NQs are highly active against protozoans, amongst them the causative pathogens of neglected tropical diseases such as human African trypanosomiasis (sleeping sickness), Chagas disease and leishmaniasis. Prominent NQ-producin...

Descripción completa

Detalles Bibliográficos
Autores principales: Ellendorff, Therese, Brun, Reto, Kaiser, Marcel, Sendker, Jandirk, Schmidt, Thomas J.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2015
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6272576/
https://www.ncbi.nlm.nih.gov/pubmed/26035104
http://dx.doi.org/10.3390/molecules200610082
Descripción
Sumario:Naphthoquinones (NQs) occur naturally in a large variety of plants. Several NQs are highly active against protozoans, amongst them the causative pathogens of neglected tropical diseases such as human African trypanosomiasis (sleeping sickness), Chagas disease and leishmaniasis. Prominent NQ-producing plants can be found among Juglans spp. (Juglandaceae) with juglone derivatives as known constituents. In this study, 36 highly variable extracts were prepared from different plant parts of J. regia, J. cinerea and J. nigra. For all extracts, antiprotozoal activity was determined against the protozoans Trypanosoma cruzi, T. brucei rhodesiense and Leishmania donovani. In addition, an LC-MS fingerprint was recorded for each extract. With each extract’s fingerprint and the data on in vitro growth inhibitory activity against T. brucei rhodesiense a Partial Least Squares (PLS) regression model was calculated in order to obtain an indication of compounds responsible for the differences in bioactivity between the 36 extracts. By means of PLS, hydrojuglone glucoside was predicted as an active compound against T. brucei and consequently isolated and tested in vitro. In fact, the pure compound showed activity against T. brucei at a significantly lower cytotoxicity towards mammalian cells than established antiprotozoal NQs such as lapachol.