Cargando…

Truncation Derivatives of the S-Layer Protein of Sporosarcina ureae ATCC 13881 (SslA): Towards Elucidation of the Protein Domain Responsible for Self-Assembly

The cell surface of Sporosarcina ureae ATCC 13881 is covered by an S-layer (SslA) consisting of identical protein subunits that assemble into lattices exhibiting square symmetry. In this work the self-assembly properties of the recombinant SslA were characterised with an emphasis on the identificati...

Descripción completa

Detalles Bibliográficos
Autor principal: Varga, Melinda
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2016
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6272907/
https://www.ncbi.nlm.nih.gov/pubmed/27563868
http://dx.doi.org/10.3390/molecules21091117
Descripción
Sumario:The cell surface of Sporosarcina ureae ATCC 13881 is covered by an S-layer (SslA) consisting of identical protein subunits that assemble into lattices exhibiting square symmetry. In this work the self-assembly properties of the recombinant SslA were characterised with an emphasis on the identification of protein regions responsible for self-assembly. To this end, recombinant mature SslA (aa 31-1097) and three SslA truncation derivatives (one N-terminal, one C-terminal and one CN-terminal) were produced in a heterologous expression system, isolated, purified and their properties analysed by in vitro recrystallisation experiments on a functionalised silicon wafer. As a result, recombinant mature SslA self-assembled into crystalline monolayers with lattices resembling the one of the wild-type SslA. The study identifies the central protein domain consisting of amino acids 341-925 self-sufficient for self-assembly. Neither the first 341 amino acids nor the last 172 amino acids of the protein sequence are required to self-assemble into lattices.