Cargando…

Ring-Opening Polymerization of ε-Caprolactone Initiated by Ganciclovir (GCV) for the Preparation of GCV-Tagged Polymeric Micelles

Ganciclovir (GCV) is a nucleoside analogue with antiviral activity against herpes viral infections, and the most widely used antiviral to treat cytomegalovirus infections. However, the low bioavailability and short half-life of GCV necessitate the development of a carrier for sustained delivery. In...

Descripción completa

Detalles Bibliográficos
Autores principales: Sawdon, Alicia J., Peng, Ching-An
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2015
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6272954/
https://www.ncbi.nlm.nih.gov/pubmed/25675152
http://dx.doi.org/10.3390/molecules20022857
Descripción
Sumario:Ganciclovir (GCV) is a nucleoside analogue with antiviral activity against herpes viral infections, and the most widely used antiviral to treat cytomegalovirus infections. However, the low bioavailability and short half-life of GCV necessitate the development of a carrier for sustained delivery. In this study, guanosine-based GCV was used as the initiator directly in ring-opening polymerization of ε-caprolactone (ε-CL) to form hydrophobic GCV-poly(caprolactone) (GCV-PCL) which was then grafted with hydrophilic chitosan to form amphiphilic copolymers for the preparation of stable micellar nanoparticles. Successful synthesis of GCV-PCL and GCV-PCL-chitosan were verified by (1)H-NMR analysis. Self-assembled micellar nanoparticles were characterized by dynamic light scattering and zetasizer with an average size of 117 nm and a positive charge of 24.2 mV. The drug release kinetics of GCV was investigated and cytotoxicity assay demonstrated that GCV-tagged polymeric micelles were non-toxic. Our results showed that GCV could be used directly in the initiation of ring-opening polymerization of ε-CL and non-toxic polymeric micelles for GCV delivery can be formed.