Cargando…
Molecular-Based Fluorescent Nanoparticles Built from Dedicated Dipolar Thienothiophene Dyes as Ultra-Bright Green to NIR Nanoemitters
Fluorescent Organic Nanoparticles (FONs), prepared by self-aggregation of dedicated dyes in water, represent a promising green alternative to the toxic quantum dots (QDs) for bioimaging purposes. In the present paper, we describe the synthesis and photophysical properties of new dipolar push-pull de...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6273080/ https://www.ncbi.nlm.nih.gov/pubmed/27649124 http://dx.doi.org/10.3390/molecules21091227 |
_version_ | 1783377302255566848 |
---|---|
author | Mastrodonato, Cristiano Pagano, Paolo Daniel, Jonathan Vaultier, Michel Blanchard-Desce, Mireille |
author_facet | Mastrodonato, Cristiano Pagano, Paolo Daniel, Jonathan Vaultier, Michel Blanchard-Desce, Mireille |
author_sort | Mastrodonato, Cristiano |
collection | PubMed |
description | Fluorescent Organic Nanoparticles (FONs), prepared by self-aggregation of dedicated dyes in water, represent a promising green alternative to the toxic quantum dots (QDs) for bioimaging purposes. In the present paper, we describe the synthesis and photophysical properties of new dipolar push-pull derivatives built from thieno[3,2-b]thiophene as a π-conjugated bridge that connects a triphenylamine moiety bearing various bulky substituents as electron-releasing moiety to acceptor end-groups of increasing strength (i.e., aldehyde, dicyanovinyl and diethylthiobarbiturate). All dyes display fluorescence properties in chloroform, which shifts from the green to the NIR range depending on the molecular polarization (i.e., strength of the end-groups) as well as a large two-photon absorption (TPA) band response in the biological spectral window (700–1000 nm). The TPA bands show a bathochromic shift and hyperchromic effect with increasing polarization of the dyes with maximum TPA cross-section reaching 2000 GM for small size chromophore. All dyes are found to form stable and deeply colored nanoparticles (20–45 nm in diameter) upon nanoprecipitation in water. Although their fluorescence is strongly reduced upon aggregation, all nanoparticles show large one-photon (up to 10(8) M(−1)·cm(−1) in the visible region) and two-photon (up to 10(6) GM in the NIR) brightness. Interestingly, both linear and non-linear optical properties are significantly affected by interchromophoric interactions, which are promoted by the molecular confinement and modulated by both the dipolar strength and the presence of the bulky groups. Finally, we exploited the photophysical properties of the FONs to design optimized core-shell nanoparticles built from a pair of complementary dipolar dyes that promotes an efficient core-to-shell FRET process. The resulting molecular-based core-shell nanoparticles combine large two-photon absorption and enhanced emission both located in the NIR spectral region, thanks to a major amplification (by a factor of 20) of the core fluorescence quantum yield. These novel nanoparticles, which combine huge one-and two-photon brightness, hold major promise for in vivo optical bioimaging. |
format | Online Article Text |
id | pubmed-6273080 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2016 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-62730802018-12-28 Molecular-Based Fluorescent Nanoparticles Built from Dedicated Dipolar Thienothiophene Dyes as Ultra-Bright Green to NIR Nanoemitters Mastrodonato, Cristiano Pagano, Paolo Daniel, Jonathan Vaultier, Michel Blanchard-Desce, Mireille Molecules Article Fluorescent Organic Nanoparticles (FONs), prepared by self-aggregation of dedicated dyes in water, represent a promising green alternative to the toxic quantum dots (QDs) for bioimaging purposes. In the present paper, we describe the synthesis and photophysical properties of new dipolar push-pull derivatives built from thieno[3,2-b]thiophene as a π-conjugated bridge that connects a triphenylamine moiety bearing various bulky substituents as electron-releasing moiety to acceptor end-groups of increasing strength (i.e., aldehyde, dicyanovinyl and diethylthiobarbiturate). All dyes display fluorescence properties in chloroform, which shifts from the green to the NIR range depending on the molecular polarization (i.e., strength of the end-groups) as well as a large two-photon absorption (TPA) band response in the biological spectral window (700–1000 nm). The TPA bands show a bathochromic shift and hyperchromic effect with increasing polarization of the dyes with maximum TPA cross-section reaching 2000 GM for small size chromophore. All dyes are found to form stable and deeply colored nanoparticles (20–45 nm in diameter) upon nanoprecipitation in water. Although their fluorescence is strongly reduced upon aggregation, all nanoparticles show large one-photon (up to 10(8) M(−1)·cm(−1) in the visible region) and two-photon (up to 10(6) GM in the NIR) brightness. Interestingly, both linear and non-linear optical properties are significantly affected by interchromophoric interactions, which are promoted by the molecular confinement and modulated by both the dipolar strength and the presence of the bulky groups. Finally, we exploited the photophysical properties of the FONs to design optimized core-shell nanoparticles built from a pair of complementary dipolar dyes that promotes an efficient core-to-shell FRET process. The resulting molecular-based core-shell nanoparticles combine large two-photon absorption and enhanced emission both located in the NIR spectral region, thanks to a major amplification (by a factor of 20) of the core fluorescence quantum yield. These novel nanoparticles, which combine huge one-and two-photon brightness, hold major promise for in vivo optical bioimaging. MDPI 2016-09-14 /pmc/articles/PMC6273080/ /pubmed/27649124 http://dx.doi.org/10.3390/molecules21091227 Text en © 2016 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC-BY) license (http://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Mastrodonato, Cristiano Pagano, Paolo Daniel, Jonathan Vaultier, Michel Blanchard-Desce, Mireille Molecular-Based Fluorescent Nanoparticles Built from Dedicated Dipolar Thienothiophene Dyes as Ultra-Bright Green to NIR Nanoemitters |
title | Molecular-Based Fluorescent Nanoparticles Built from Dedicated Dipolar Thienothiophene Dyes as Ultra-Bright Green to NIR Nanoemitters |
title_full | Molecular-Based Fluorescent Nanoparticles Built from Dedicated Dipolar Thienothiophene Dyes as Ultra-Bright Green to NIR Nanoemitters |
title_fullStr | Molecular-Based Fluorescent Nanoparticles Built from Dedicated Dipolar Thienothiophene Dyes as Ultra-Bright Green to NIR Nanoemitters |
title_full_unstemmed | Molecular-Based Fluorescent Nanoparticles Built from Dedicated Dipolar Thienothiophene Dyes as Ultra-Bright Green to NIR Nanoemitters |
title_short | Molecular-Based Fluorescent Nanoparticles Built from Dedicated Dipolar Thienothiophene Dyes as Ultra-Bright Green to NIR Nanoemitters |
title_sort | molecular-based fluorescent nanoparticles built from dedicated dipolar thienothiophene dyes as ultra-bright green to nir nanoemitters |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6273080/ https://www.ncbi.nlm.nih.gov/pubmed/27649124 http://dx.doi.org/10.3390/molecules21091227 |
work_keys_str_mv | AT mastrodonatocristiano molecularbasedfluorescentnanoparticlesbuiltfromdedicateddipolarthienothiophenedyesasultrabrightgreentonirnanoemitters AT paganopaolo molecularbasedfluorescentnanoparticlesbuiltfromdedicateddipolarthienothiophenedyesasultrabrightgreentonirnanoemitters AT danieljonathan molecularbasedfluorescentnanoparticlesbuiltfromdedicateddipolarthienothiophenedyesasultrabrightgreentonirnanoemitters AT vaultiermichel molecularbasedfluorescentnanoparticlesbuiltfromdedicateddipolarthienothiophenedyesasultrabrightgreentonirnanoemitters AT blancharddescemireille molecularbasedfluorescentnanoparticlesbuiltfromdedicateddipolarthienothiophenedyesasultrabrightgreentonirnanoemitters |