Cargando…
Process of Fragment-Based Lead Discovery—A Perspective from NMR
Fragment-based lead discovery (FBLD) has proven fruitful during the past two decades for a variety of targets, even challenging protein–protein interaction (PPI) systems. Nuclear magnetic resonance (NMR) spectroscopy plays a vital role, from initial fragment-based screening to lead generation, becau...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6273320/ https://www.ncbi.nlm.nih.gov/pubmed/27438813 http://dx.doi.org/10.3390/molecules21070854 |
Sumario: | Fragment-based lead discovery (FBLD) has proven fruitful during the past two decades for a variety of targets, even challenging protein–protein interaction (PPI) systems. Nuclear magnetic resonance (NMR) spectroscopy plays a vital role, from initial fragment-based screening to lead generation, because of its power to probe the intrinsically weak interactions between targets and low-molecular-weight fragments. Here, we review the NMR FBLD process from initial library construction to lead generation. We describe technical aspects regarding fragment library design, ligand- and protein-observed screening, and protein–ligand structure model generation. For weak binders, the initial hit-to-lead evolution can be guided by structural information retrieved from NMR spectroscopy, including chemical shift perturbation, transferred pseudocontact shifts, and paramagnetic relaxation enhancement. This perspective examines structure-guided optimization from weak fragment screening hits to potent leads for challenging PPI targets. |
---|