Cargando…
Influence of Cysteine and Tryptophan Substitution on DNA-Binding Activity on Maize α-Hairpinin Antimicrobial Peptide
For almost four decades, antimicrobial peptides have been studied, and new classes are being discovered. However, for therapeutic use of these molecules, issues related to the mechanism of action must be answered. In this work, the antimicrobial activity of the hairpinin MBP-1 was studied by the syn...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6273665/ https://www.ncbi.nlm.nih.gov/pubmed/27529210 http://dx.doi.org/10.3390/molecules21081062 |
Sumario: | For almost four decades, antimicrobial peptides have been studied, and new classes are being discovered. However, for therapeutic use of these molecules, issues related to the mechanism of action must be answered. In this work, the antimicrobial activity of the hairpinin MBP-1 was studied by the synthesis of two variants, one replacing cysteines and one tryptophan with alanine. Antibacterial activity was abolished in both variants. No membrane disturbance, even in concentrations higher than those required to inhibit the bacteria, was observed in SEM microscopy. The gel retardation assay showed that MBP-1 possesses a higher DNA-binding ability than variants. Finally, molecular modelling showed that the lack of cysteines resulted in structure destabilization and lack of tryptophan resulted in a less flexible peptide, with less solvent assessable surface area, both characteristics that could contribute to absence of activity. In summary, the data here reported add more information about the multiple mechanisms of action of α-hairpinins. |
---|