Cargando…

Organ- and Growing Stage-Specific Expression of Solanesol Biosynthesis Genes in Nicotiana tabacum Reveals Their Association with Solanesol Content

Solanesol is a noncyclic terpene alcohol that is composed of nine isoprene units and mainly accumulates in solanaceous plants, especially tobacco (Nicotiana tabacum L.). In the present study, RNA-seq analyses of tobacco leaves, stems, and roots were used to identify putative solanesol biosynthesis g...

Descripción completa

Detalles Bibliográficos
Autores principales: Yan, Ning, Zhang, Hongbo, Zhang, Zhongfeng, Shi, John, Timko, Michael P., Du, Yongmei, Liu, Xinmin, Liu, Yanhua
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2016
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6273945/
https://www.ncbi.nlm.nih.gov/pubmed/27854285
http://dx.doi.org/10.3390/molecules21111536
Descripción
Sumario:Solanesol is a noncyclic terpene alcohol that is composed of nine isoprene units and mainly accumulates in solanaceous plants, especially tobacco (Nicotiana tabacum L.). In the present study, RNA-seq analyses of tobacco leaves, stems, and roots were used to identify putative solanesol biosynthesis genes. Six 1-deoxy-d-xylulose 5-phosphate synthase (DXS), two 1-deoxy-d-xylulose 5-phosphate reductoisomerase (DXR), two 2-C-methyl-d-erythritol 4-phosphate cytidylyltransferase (IspD), four 4-diphosphocytidyl-2-C-methyl-d-erythritol kinase (IspE), two 2-C-methyl-d-erythritol 2,4-cyclo-diphosphate synthase (IspF), four 1-hydroxy-2-methyl-2-(E)-butenyl 4-diphosphate synthase (IspG), two 1-hydroxy-2-methyl-2-(E)-butenyl 4-diphosphate reductase (IspH), six isopentenyl diphosphate isomerase (IPI), and two solanesyl diphosphate synthase (SPS) candidate genes were identified in the solanesol biosynthetic pathway. Furthermore, the two N. tabacum SPS proteins (NtSPS1 and NtSPS2), which possessed two conserved aspartate-rich DDxxD domains, were highly homologous with SPS enzymes from other solanaceous plant species. In addition, the solanesol contents of three organs and of leaves from four growing stages of tobacco plants corresponded with the distribution of chlorophyll. Our findings provide a comprehensive evaluation of the correlation between the expression of different biosynthesis genes and the accumulation of solanesol, thus providing valuable insight into the regulation of solanesol biosynthesis in tobacco.