Cargando…

Isolation and Biosynthetic Analysis of Haliamide, a New PKS-NRPS Hybrid Metabolite from the Marine Myxobacterium Haliangium ochraceum

Myxobacteria of marine origin are rare and hard-to-culture microorganisms, but they genetically harbor high potential to produce novel antibiotics. An extensive investigation on the secondary metabolome of the unique marine myxobacterium Haliangium ochraceum SMP-2 led to the isolation of a new polyk...

Descripción completa

Detalles Bibliográficos
Autores principales: Sun, Yuwei, Tomura, Tomohiko, Sato, Junichi, Iizuka, Takashi, Fudou, Ryosuke, Ojika, Makoto
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2016
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6274090/
https://www.ncbi.nlm.nih.gov/pubmed/26751435
http://dx.doi.org/10.3390/molecules21010059
Descripción
Sumario:Myxobacteria of marine origin are rare and hard-to-culture microorganisms, but they genetically harbor high potential to produce novel antibiotics. An extensive investigation on the secondary metabolome of the unique marine myxobacterium Haliangium ochraceum SMP-2 led to the isolation of a new polyketide-nonribosomal peptide hybrid product, haliamide (1). Its structure was elucidated by spectroscopic analyses including NMR and HR-MS. Haliamide (1) showed cytotoxicity against HeLa-S3 cells with IC(50) of 12 μM. Feeding experiments were performed to identify the biosynthetic building blocks of 1, revealing one benzoate, one alanine, two propionates, one acetate and one acetate-derived terminal methylene. The biosynthetic gene cluster of haliamide (hla, 21.7 kbp) was characterized through the genome mining of the producer, allowing us to establish a model for the haliamide biosynthesis. The sulfotransferase (ST)-thioesterase (TE) domains encoded in hlaB appears to be responsible for the terminal alkene formation via decarboxylation.