Cargando…
Group I Intron Internal Guide Sequence Binding Strength as a Component of Ribozyme Network Formation
Origins-of-life research requires searching for a plausible transition from simple chemicals to larger macromolecules that can both hold information and catalyze their own production. We have previously shown that some group I intron ribozymes possess the ability to help synthesize other ribozyme ge...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6274277/ https://www.ncbi.nlm.nih.gov/pubmed/27689977 http://dx.doi.org/10.3390/molecules21101293 |
_version_ | 1783377581306806272 |
---|---|
author | Satterwhite, Laura Elizabeth Yeates, Jessica A. M. Lehman, Niles |
author_facet | Satterwhite, Laura Elizabeth Yeates, Jessica A. M. Lehman, Niles |
author_sort | Satterwhite, Laura Elizabeth |
collection | PubMed |
description | Origins-of-life research requires searching for a plausible transition from simple chemicals to larger macromolecules that can both hold information and catalyze their own production. We have previously shown that some group I intron ribozymes possess the ability to help synthesize other ribozyme genotypes by recombination reactions in small networks in an autocatalytic fashion. By simplifying these recombination reactions, using fluorescent anisotropy, we quantified the thermodynamic binding strength between two nucleotides of two group I intron RNA fragments for all 16 possible genotype combinations. We provide evidence that the binding strength (K(D)) between the 3-nucleotide internal guide sequence (IGS) of one ribozyme and its complement in another is correlated to the catalytic ability of the ribozyme. This work demonstrates that one can begin to deconstruct the thermodynamic basis of information in prebiotic RNA systems. |
format | Online Article Text |
id | pubmed-6274277 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2016 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-62742772018-12-28 Group I Intron Internal Guide Sequence Binding Strength as a Component of Ribozyme Network Formation Satterwhite, Laura Elizabeth Yeates, Jessica A. M. Lehman, Niles Molecules Article Origins-of-life research requires searching for a plausible transition from simple chemicals to larger macromolecules that can both hold information and catalyze their own production. We have previously shown that some group I intron ribozymes possess the ability to help synthesize other ribozyme genotypes by recombination reactions in small networks in an autocatalytic fashion. By simplifying these recombination reactions, using fluorescent anisotropy, we quantified the thermodynamic binding strength between two nucleotides of two group I intron RNA fragments for all 16 possible genotype combinations. We provide evidence that the binding strength (K(D)) between the 3-nucleotide internal guide sequence (IGS) of one ribozyme and its complement in another is correlated to the catalytic ability of the ribozyme. This work demonstrates that one can begin to deconstruct the thermodynamic basis of information in prebiotic RNA systems. MDPI 2016-09-27 /pmc/articles/PMC6274277/ /pubmed/27689977 http://dx.doi.org/10.3390/molecules21101293 Text en © 2016 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC-BY) license (http://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Satterwhite, Laura Elizabeth Yeates, Jessica A. M. Lehman, Niles Group I Intron Internal Guide Sequence Binding Strength as a Component of Ribozyme Network Formation |
title | Group I Intron Internal Guide Sequence Binding Strength as a Component of Ribozyme Network Formation |
title_full | Group I Intron Internal Guide Sequence Binding Strength as a Component of Ribozyme Network Formation |
title_fullStr | Group I Intron Internal Guide Sequence Binding Strength as a Component of Ribozyme Network Formation |
title_full_unstemmed | Group I Intron Internal Guide Sequence Binding Strength as a Component of Ribozyme Network Formation |
title_short | Group I Intron Internal Guide Sequence Binding Strength as a Component of Ribozyme Network Formation |
title_sort | group i intron internal guide sequence binding strength as a component of ribozyme network formation |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6274277/ https://www.ncbi.nlm.nih.gov/pubmed/27689977 http://dx.doi.org/10.3390/molecules21101293 |
work_keys_str_mv | AT satterwhitelauraelizabeth groupiintroninternalguidesequencebindingstrengthasacomponentofribozymenetworkformation AT yeatesjessicaam groupiintroninternalguidesequencebindingstrengthasacomponentofribozymenetworkformation AT lehmanniles groupiintroninternalguidesequencebindingstrengthasacomponentofribozymenetworkformation |