Cargando…

A Simple and Effective Ratiometric Fluorescent Probe for the Selective Detection of Cysteine and Homocysteine in Aqueous Media

Biothiols such as cysteine (Cys) and homocysteine (Hcy) are essential biomolecules participating in molecular and physiological processes in an organism. However, their selective detection remains challenging. In this study, ethyl 2-(3-formyl-4-hydroxyphenyl)-4-methylthiazole-5-carboxylate (NL) was...

Descripción completa

Detalles Bibliográficos
Autores principales: Na, Risong, Zhu, Meiqing, Fan, Shisuo, Wang, Zhen, Wu, Xiangwei, Tang, Jun, Liu, Jia, Wang, Yi, Hua, Rimao
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2016
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6274303/
https://www.ncbi.nlm.nih.gov/pubmed/27527138
http://dx.doi.org/10.3390/molecules21081023
Descripción
Sumario:Biothiols such as cysteine (Cys) and homocysteine (Hcy) are essential biomolecules participating in molecular and physiological processes in an organism. However, their selective detection remains challenging. In this study, ethyl 2-(3-formyl-4-hydroxyphenyl)-4-methylthiazole-5-carboxylate (NL) was synthesized as a ratiometric fluorescent probe for the rapid and selective detection of Cys and Hcy over glutathione (GSH) and other amino acids. The fluorescence intensity of the probe in the presence of Cys/Hcy increased about 3-fold at a concentration of 20 equiv. of the probe, compared with that in the absence of these chemicals in aqueous media. The limits of detection of the fluorescent assay were 0.911 μM and 0.828 μM of Cys and Hcy, respectively. (1)H-NMR and MS analyses indicated that an excited-state intramolecular proton transfer is the mechanism of fluorescence sensing. This ratiometric probe is structurally simple and highly selective. The results suggest that it has useful applications in analytical chemistry and diagnostics.