Cargando…

Ethanolic Extract of Acanthopanax koreanum Nakai Alleviates Alcoholic Liver Damage Combined with a High-Fat Diet in C57BL/6J Mice

Alcoholic and nonalcoholic liver steatosis have an indistinguishable spectrum of histological features and liver enzyme elevations. In this study, we investigated the potential of the ethanolic extract of Acanthopanax koreanum Nakai (AK) to protect against experimental alcoholic liver disease in a m...

Descripción completa

Detalles Bibliográficos
Autores principales: Kim, Haein, Park, Minyoung, Shin, Jae-Ho, Kwon, Oran
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2016
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6274326/
https://www.ncbi.nlm.nih.gov/pubmed/27231887
http://dx.doi.org/10.3390/molecules21060681
Descripción
Sumario:Alcoholic and nonalcoholic liver steatosis have an indistinguishable spectrum of histological features and liver enzyme elevations. In this study, we investigated the potential of the ethanolic extract of Acanthopanax koreanum Nakai (AK) to protect against experimental alcoholic liver disease in a mouse model that couples diet and daily ethanol bolus gavage. Fifty-six C57BL/6J mice were randomly divided into seven groups: normal control (NC), alcohol control (AC), alcohol/HFD control (AH), low-dose (1%) AK in alcohol group (ACL), high-dose (3%) AK in alcohol group (ACH), low-dose AK in alcohol/HFD group (AHL), and high-dose AK in alcohol/HFD group (AHH). The AH group showed more severe damage than the AC group in terms of biochemical and molecular data that were observed in this study. The administration of AK exerted remarkable effects in: plasma ALT (p < 0.0001), total lipid (p = 0.014), TG (p = 0.0037) levels; CPT-1α (p = 0.0197), TLR4 (p < 0.0001), CD14 (p = 0.0002), IL-6 (p = 0.0264) and MCP-1 (p = 0.0045) gene expressions; and ALDH (p < 0.0001) and CAT (p = 0.0076) activities. The data suggested that at least the high dose AK might confer protection against alcoholic liver damage combined with an HFD by accelerating lipid oxidation and alcohol metabolism and by suppressing the inflammatory response, including the TLR pathway.